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An integrated view concerning the probabilistic organization of quantum mech-
anics is first obtained by systematic confrontation of the Kolmogorov formula-
tion of the abstract theory of probabilities with the quantum mechanical
representation and its factual counterparts. Because these factual counterparts
possess a peculiar space-time structure stemming from the operations by which
the observer produces the studied states (operations of state preparation) and
the qualifications of these (operations of measurement), the approach brings
forth “probability-trees,” complex constructs with treelike space-time support.
Though it is strictly entailed by confrontation with the abstract theory of prob-
abilities as it now stands, the construct of a quantum mechanical probability tree
transgresses this theory. It indicates the possibility of an extended abstract theory
of probabilities: Quantum mechanics appears to be neither a “normal” prob-
abilistic theory nor an “abnormal” one, but a pioneering particular realization
of a future extended abstract theory of probabilities. The integrated perception
of the probabilistic organization of quantum mechanics removes the current
identifications of spectral decompositions of one state vector, with superpositions
of several state vectors. This leads to the definition of operators of state prepara-
tion and of the calculus with these and to a clear understanding of the physical
significance of the principle of superposition. Furthermore, a complement to the
quantum theory of measurements is obtained.

1. PRELIMINARY

In this work we combine results already exposed in other works
(Mugur-Schiichter, 1983, 1984, 1985, 1991, 1992a,b). But the lighting is
new, concentrated upon the definition of operators of state preparation and
the physical significance of the principle of superposition.

Sometimes the exposition reproduces ad literam previously published
texts. This reflects the fact that in the present stage of the development of
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1718 Mugur-Schachter

probability chain corresponding to a space (3) can be represented by the
writing

(ly>, A) ~=[a, ta, 7(y, A)] (1)

This is the sought integrated representation of the formal quantum
mechanical probability-chains, achieved with the help of the quantum mech-
anical descriptors.

2.2.2. The Factual Quantum Mechanical Probability Chains

The formal chains (1°) are only a coded representation of other, factual
quantum mechanical probability chains. Let us now identify these factual

chains.

The Factual Quantum Mechanical Probability Spaces. We postpone the
specification of the factual random phenomenon corresponding to the sym-
bol (Jy), A) from the chain (1') and we consider first only the space (3),
[a, Ta, m(y, A)] involved in this chain. The corresponding factual space can
be immediately specified as follows:

[Vi(Dy4, 2), T4, 7y, M,)] (3

where 4 designates an observable and numerically valued physical aspect of
a macroscopic device D4 able to generate certain materializations of the
numerical values to be assigned to the quantum mechanical observable (in
the mathematical sense this time) A, namely “needle positions” of D.;
V,(D,, ) is the universe of all the possible values ¥; of the physical aspect
A of D, a universe brought forth by “one” realization of what is globally
called a “measurement process” of the observable A, consisting by definition
of a very big number of reiterations of a registration of a value ¥, operated
each time by starting from the state of § symbolized by the state vector 73]
newly prepared and each such registration covering some spatial domain d,
and beginning at a time ¢ when the state vector of S is |y) and then lasting
for some nonnull time interval (¢,—¢)>0 (let us denote this measurement
process by M(y, D,)); 74 is the total algebra on the universe V4 (D4, 14);
and m(w, M) is the density of the probability measure put on 7., depending
on the state labeled by the state vector |y ) and on the measurement process
M, performed on this state.

The probability measure 7(y, M) on the algebra 7, from the probabil-
ity space (3') is determined, via the law of total probabilities, by the probabil-
ity density 7(w, M4, ¥}) postulated on the universe V(Dy, 14) = {V;,jeld}
of elementary events from this space.
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The Factual Quantum Mechanical Random Phenomena. What is the fac-
tual random phenomenon that brings forth the universes of elementary
events V(D 14)=1{V;,jeJ} from a factual quantum mechanical probabil-
ity space (3')? This random phenomenon possess a complex structure. It
brings in a sequence of three partial procedures covering three distinct space-
time domains:

1. The first partial procedure is the preparation operation P(y,) which,
at its final moment #, (supposed to be definable), introduces an initial state
of § represented by the state vector |y(fy)) =|y,); this operation covers
some nonnull space-time domain [Ar x Aty]p.

2. The second partial procedure, which does not necessarily exist, is a
process E(H, to, f) of evolution of the initial state of S, leading at the time
¢ to the state with state vector |w(#)) = |y ). When it does exist, this evolution
(formally described by the writing |y) =T(H, to, t)|wo), where T(H, f,, 1) is
the acting propagator) covers some new space-time interval [Ar x Af].,
where At=1—1,.

3. The third partial procedure is the measurement operation
M, (y, D,) from the definition of the observable space (3'), performed on
the state of S symbolized by the state vector |y ).

As soon as the time > 1, is fixed, the succession

P=[P(yo), E(H, ty, 1), M4 (y, D.y)] 4)

constitutes “one identically reproducible procedure P,” each reiteration of
P reestablishing the origin of times 7,. Note that the succession of only the
first two partial procedures from (4) can be regarded as a preparation opera-
tion P(y) producing the studied state represented by the state vector |y )=
T(H, 1o, t)|wo). So we can also write

P=[P(y), M(y, DJ)] (4)

where the initial operation P(y,) and the evolution symbolized by T(H, t,, 1)
become implicit.

Each realization of the procedure P brings forth one, V;, among all the
various possible elementary events from the universe of elementary events
U=V,. Thus we are finally in presence of a random phenomenon (P, U) in
the standard sense of the term, namely

(P’ U)=([P(Wn), E(H! fﬂ! [)! M.-l('ys D,{)]-, VA (DAy |rJI)) {5)
or

(P, U)=([P(y), M (y, D,)], Vi(Dy4, 14)) (5"
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The Factual Quantum Mechanical Probability Chains. So the factual
quantum mechanical probability chains can be written as follows:

((P(w), Mo (v, D)), Va(Dus, 14)) [V (Dus, ta), T4, 2y, M1 (17)

The expressions (3') to (1”) indicate now explicitly and exhaustively the
specific semantic contents of the quantum mechanical probability chains.

2.2.3. The Connection between the Factual and the Formal Quantum
Mechanical Probability Spaces

How can we translate a factual observable quantum mechanical prob-
ability space into the corresponding formal space so as to be able to apply
to it the quantum mechanical algorithms?

In quantum mechanics each eigenvalue a;ea is posited to be calculable
as a function fx(¥;) of the observed factual value VjeV,(D,, t2) which is
labeled by the same index jeJ:

@ = fa(¥)) (6)

Furthermore, each observable elementary probability density #(y, M, V)
is posed to be numerically equal to the corresponding formal elementary
probability density, i.e., for any |y) and any jeJ, itis postulated that (degen-
erate cases being excluded)

2(y, M4, V) =n(y, @) = Kuly )’ (7

where |u;) is the eigenvector of the observable A corresponding to the eigen-
value a; = fa(¥;). [Notice that thereby a, can be regarded as a random vari-
able on the factual space (3'), a space that is not defined inside the
formalism.] In this sense, the formal probability density (2) is a “predictional
Jaw,” verifiable with the help of the relative frequencies of emergence of the
observed values ¥}, at the limit of large numbers.

Equations (6) and (7) form the key of the code which translates the
factual observable quantum mechanical probability space (3') into the for-
mal space (3). Any quantum mechanical prediction belongs to some formal
probability space (3) corresponding to a factual space (3).

2.2.4. The Processual Roots of the Quantum Mechanical Elementary
Events in the Sense of Probabilities

The expression (5) of a factual quantum mechanical random phenom-
enon involves reiterations of a chain of operations and processes:

[(preparation operation P( Wo))-(evolution process E)-(measurement
operation M ,)-(registration of a needle position V] of the utilized device

D] (eqmce)

\
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[(eqmce): elementary quantum mechanical chain experiment] : These are the
processual roots of the quantum mechanical elementary events in the sense of
probabilities.

An elementary quantum mechanical chain experiment possesses a
remarkable unobservable depth wherefrom there emerges into the observable
only the extremity ¥;, j€J, that contributes to the construction of the factual
observable universe of elementary events V.(Dy4. 2)=1{V.jel }. Each
observable quantum mechanical “event” (nonelementary) from an algebra
7 from a factual quantum mechanical probability space (3') contains inside
its semantic substratum all the unobservable chains of operations and pro-
cesses forming the elementary quantum mechanical chain experiments that
end up with the registration of a needle position V; contained in that factual
observable quantum mechanical event. So any quantum mechanical pre-
diction concerns either an elementary quantum mechanical chain experiment
or a union of such experiments. The elementary quantum mechanical chain
experiments (eqmce) yield the *'fibers” out of which is made the factual sub-
stance of the quantum theory.

2.2.5. Partial Conclusion

We are now endowed with an explicit knowledge of the relations
between, on the one hand, the basic abstract concepts of the probabilistic
conceptualization (identically reproducible procedure P, universe of elemen-
tary events U, algebra of events 7, probability measure r), and on the
other hand, the quantum mechanical formal descriptors, state vectors v,
observables A, eigenvectors |u;, eigenvalues g;. It appears that quantum
mechanics contains definite realizations of each basic concept from the pre-
sent abstract theory of probabilities. So, in this sense, it can be asserted that
quantum mechanics is not an “abnormal” probabilistic theory. Furthermore,
we have also explicated the specific semantical content assigned by the quan-
tum mechanical description to the basic abstract probabilistic concepts.
Now, do these first results entail that quantum mechanics is a “normal”
probabilistic theory?

2.3. The Probability Trees of State Preparations

We arrive now at the crucial point of this section, where new consequen-
ces of the preceding analysis will manifest themselves.

We have shown that any quantum mechanical prediction concerns one
or several elementary quantum mechanical chain experiments. We shall now
show that the ensemble of all the elementary quantum mechanical chain
experiments falls into classes of metastructures possessing a treelike space-
time organization.
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Let us fix a preparation P(y,), a time interval At=t—ty, and a Hamil-
tonian H. Consider now the ensemble of all the probability chains (5) or (5')
corresponding to the fixed pair (P(yo), |y ) ) and to all the distinct dynamical
observables A, B, C, D, . . . defined in quantum mechanics: The chains from
this ensemble constitute together a certain unity, because of their common
provenance (P(yy), |y) ). What is the space-time structure of this unity?

For all the chains from the considered unity, the space-time support of
the operation of state preparation P(y,) and of the Schrodinger evolution
T(H, 1o, 0)|wo) =|w), t =1y, of the prepared state which follows this opera-
tion is, by construction, the same, a common space-time trunk. If in particu-
lar |y) =|wo), ie., if t=1y, then the trunk is reduced to the operation of
state preparation alone.

Consider now the space-time supports of the measurement processes
M , involved in this unity. The ensemble of these processes splits into suben-
sembles My, My, . . . of mutually “compatible” processes of ““measurement
evolution” corresponding to mutually commuting observables.

Contrary to many very confusing considerations concerning “‘successive
measurements of compatible observables™ (versus the projection postulate)
that can be currently found in the textbooks of quantum mechanics, let us
emphasize this: Each one measurement evolution from the subensemble My
is such that each registration of a value ¥} of the “needle position” of the
macroscopic device Dy associated with My permits us to calculate, from the
unique datum ¥}, via a set of various theoretical connecting definitions (6),
a;= fa(V), b;=fa(¥)), . . ., all the different eigenvalues a;, b, . .., labeled
by the same index j, for, respectively, all the observables A, B, . . . , measur-
able by a process belonging to the class My. This entails that for all the
commuting observables corresponding to one same class My, the process of
registration of a value of the “needle position” of the device Dy can be one
common process covering one common space-time support (no succession
whatever is necessary). While this is not possible for two noncommuting
observables belonging to two distinct classes My and M y:

This is what is commonly designated as ** Bohr complementarity,” nothing
else.

Now, this entails that, globally, the ensemble of all the factual probabil-
ity chains (1) corresponding to a fixed pair (P(yo), |y ) ) constitutes a unity,
a metaconstruct, with a branching, treelike space-time structure. Let us sym-
bolize this treelike structure by 7 (yo, ¥) and let us call it a “quantum
mechanical probability tree” (in short, a probability tree). [Since all the
probability trees,involving the same studied state vector |y) introduce the
same branch structure, carrying on top the same probability spaces, in con-
texts where the distinction between the state vector of the initially prepared
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state and that of the studied state is not relevant we shall assume that
|y>=|wo) and the abbreviated symbol 7 (y) can be utilized.] N

So the pairs (P(yy), |y)>) define on the ensemble of all the quantum
mechanical probability chains a partition in probability trees. A fortiori, they
define such a partition also on the ensemble of all the elementary quantum
mechanical chain experiments (eqmce) out of which the quantum mechanical
random phenomena are made.

Figure 1 provides a simplified example of a probability tree of a state
preparation, with only four observables, and making use of somewhat abbre-
viated notations: 4, B, C, D are physical observable aspects (“needle posi-
tions” of macroscopic devices) corresponding to the quantum mechanical
observables A, B, C, D, respectively. The measurement process M, corre-
sponds to two commuting observables C, D: (the commutator of C and D
is zero, [C, D]=0), while M, and M, correspond to two noncommuting
observables A, B with [A, B]#0. The notations (3').4, (3')s, and (3')cp
indicate the observational spaces (3') corresponding, respectively, to the
measurement processes M ,, Mg, and M performed on the state represen-
ted by |w)=T(to, 1, H)|wo). Each one of the spaces (3') emerges at some
specific time ¢, t5, and t¢p (a statistical time, defined with respect to the
reiterated origin fo). The commuting observables C, D generate together one
common branch producing an observable space (3') characterized in more
detail, namely with respect to both observables involved. A(P(y,)), A(E),
and A(P(y)), indicate, respectively, the space-time domains covered by the
process of preparation P(y) of the initial state with state vector |yo), of
evolution E(1o, t, H) represented by T(t, t, H)|wo), or, globally, of prepara-
tion P(yw)=[P(w.), E(to, 1, H)] of the state with state vector |y ). Here

T
A
A
LA i i | ow
| Ml‘(\%}]j \ .
¢ [ARTTRREARvIAl i —’

Fig. 1. A quantum mechanical probability tree 7 (P(wq), [w) ).
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A(A, w), A(B, wv), and A(CD, y), indicate, respectively, the spacetime
domains covered by the measurement evolutions M4, My, and Mcp.

A quantum mechanical probability tree is a remarkably comprehensive
metastructure of probability chains. Most of the fundamental algorithms of
the quantum mechanical calculus which combine one normed state vector,
with the dynamical operators representing the quantum mechanical observ-
ables, can be defined inside—any—one tree 7 (P(w), l¥)):

1. The mean value of an observable A, in a state with state vector |y,
namely

CylAlv), Vi), VA
2. The uncertainty theorem, for any pair of observables,
CYICAAY |y < yI(ABYly) = [<w|(i/2)(AB—BA) |y
=(1/2)(h/2r), Yly), YA,B
3. The principle of spectral decomposition (expansion postulate)

lw)= Z_ ey, ap)lu

Vig), VA: Aly)=alu) [e(w, a;): the expansion coefficients]

which permits us to calculate the probability density z(|w ), ;) via the prob-
ability postulate

(v, a) =Ky =le(y, @)

4. Finally, the whole quantum mechanical “transformation theory”
from the basis of an observable A to that of an observable B

ey, b)) =Y ayc(y, a)
]

VA, B: Aluy=ajuy) and Blo)=blv), VjelJ, VkeK

where J and K are the index sets for the eigenvalues of, respectively, A and
B, and a;= (vju;> are the transformation coefficients.

But as soon as either the principle of superposition or the orthodox
quantum mechanical representation of successive measurements comes into
play, the corresponding quantum mechanical algorithms cease to be
embeddable into one single probability tree: there the embeddability into
one tree hits a limit. Several trees have to be combined. So a still higher
degree of complexity than that of only one probability tree is formed and
acts inside the organization implicitly reached by the probabilistic conceptua-
lization hidden inside the quantum mechanical formalism. The quantum
mechanical formalism contains implicit calculi with whole probability trees.
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3. BEYOND KOLMOGOROV’S THEORY OF PROBABILITIES:
PROBABILISTIC META AND META-METADEPENDENCE

We have performed an attentive analysis of the connections between
Kolmogorov’s standard fundamental probabilistic concepts (identically
reproducible procedure, universe of elementary events, an algebra of events
on this universe, a probability measure on this algebra), the main descriptors
of the quantum mechanical formalism (state vectors, operators, eigen-
functions), and the factual counterparts of these. This, because of the space-
time characteristics of the factual counterparis of the quantum mechanical
descriptors, brought forth, with a sort of inner necessity, the probabilistic
metaconstruct with treelike space-time support described above. But this
metaconstruct of distinct probability chains, though it has been produced
by systematic confrontation with the standard probabilistic concepts, trans-
cends the abstract theory of probabilities as it now stands: So far the most
complex basic probabilistic structure explicitly defined in the theory of prob-
abilities is one probability space. Not even the notion of one probability
chain is explicitly defined as a monolithic construct. 4 fortiori, the concept
of a probability tree, which connects several irreducibly distinct probability
chains, is not defined in the current theory of probabilities. Are these novel-
ties probabilistic “anomalies™? Inasmuch as they are rooted in the current
abstract theory of probabilities, it seems more adequate to regard them as
germs of a possible extension of this theory. Of course, the fact that the
quantum mechanical usage of probability measures exceeds the “classical”
theory of probabilities was perceived long ago (e.g., Mackey, 1963 ; Gudder,
1976; Suppes, 1966; Mittelstaedt, 1976; van Fraassen and Hooker, 1976,
and many others). But this transgression is usually mentioned in negative
terms: “nonembeddability” into a unique probability space of the quantum
mechanical measures corresponding to noncommuting observables, which is
an “anomaly” that “hinders” a classical definition of a conditional probabil-
ity for two incompatible events, etc. The concept of probability tree permits
us to develop a constructive perception.

3.1. Probabilistic Metadependence Via a Common Potentiality

The quantum mechanical transformation theory (c(w, by)=
Z_; agc(y, a;), YA, B: Alu) =alu), Blogy =bilvy), Vjel, YkeK; J, K index
sets; A, B two noncommuting observables, a,;= {vu;) the transformation
coefficients) permits us to determine entirely, from the knowledge of the
probability measure 7(y, a;) from one branch of a probability tree, any
other probability measure 7(w, b;) belonging to another branch of that
same tree. Indeed the equalities |c(y, bk)12=[2j aye(y, @), Yjel, Vkek,



1726 Mugur-Schachter

are equivalent to the specification of a funcational relation

(v, by) = Fom[n(v, a;)]

between the probability measures corresponding to the two noncommuting
observables A and B. But the standard concept of functional relation
between two probability measures does not singularize the particular sort of
probabilistic connection between two probability measures introduced by
the quantum theory. Nor does it permit us to recover it fully, as shown by
Cohen (1988, pp. 991-993). As is stressed by the index QM, we are in the
presence of a specifically quantum mechanical functional relation. What
status can we assert for it?

According to the current theory of probabilities the concept of “proba-
bilistic dependence” is by definition confined inside one probability space
where it concerns isolated pairs of events. Two events are tied by a “proba-
bilistic dependence” if knowledge of one of these events “influences™ the
expectations concerning the other one. So the relation n(y,b,)=
Fomlm(y, a;)] of mutual determination of the probability measures from a
quantum mechanical probability tree can naturally be regarded as a “maxi-
mal probabilistic metadependence”: “maximal’ because it consists in mutual
determination; “probabilistic” because, though this determination is a cer-
tainty about “influence,” nevertheless it concerns probabilistic constructs;
“metadependence” because it concerns, not pairs of events from one space,
but globally pairs of probability measures on entire algebras of events, which,
with respect to events, are metaentities. (An explicit definition of this meta-
dependence can be found in Mugur-Schéichter (1992c).)

Now, if this view and language are accepted, what has just been named
the probabilistic metadependence defined by the quantum mechanical trans-
formation theory appears as reflecting the studied state with state vector |y
from the common trunk of the tree. This state, which stems from a preparation
operation P(y,) and then might have evolved according to some law
|T(to, t, H)|wo)=|y), but that has never yet been observed, has to be con-
ceived of (in consequence of this lack of previous qualifications) merely as
a monolith of still nondifferentiated observational potentialities that sets a
genetic unity beneath the various incompatible measurement processes of
actualization of this or that particular observational potentiality, leading to
this or that actualized observable space (3'). [Though in quite different con-
texts, Bohm (1951), de Broglie (1956), and Primas (1990), as well as other
authors, have also explicitly stressed the multiple potential meaning of the
quantum mechanical concept of state.]

The probability tree of a studied state with state vector |y ) is a complex
unity which, with respect to the observable manifestations of a microsystem,
possesses a “‘potential-actualization-actualized character.”
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The quantum mechanical functional relations Fqu between the probability
measures from irreducibly distinct observable spaces—considered as
wholes—belonging to a same probability tree, reflect the genetic unity of
these spaces via the common observational potentialities captured inside the
state from the trunk of the tree. The quantum mechanical transformation
theory involves new probabilistic features that are neither probabilistic “ano-
malies” nor mere numerical algorithms. They are a mathematical description
of particular realizations of probabilistic metaproperties, brought forth by
a growth of the probabilistic thinking that happened inside the process of
conceptualization of the microphenomena. A growth that draws attention
to the necessity, at the most basic level of description where no previously
elaborated conceptualization is presupposed, to represent and to study the
cognitive operations by which the observer—who necessarily exists and
acts—produces the objects to be qualified and the processes of qualification
of these. Indeed, these operations possess themselves physical characteristics,
in particular space-time supports, that entail nontrivial consequences for
the probabilistic descriptions constructed by their help (Mugur-Schichter
(1992d)).

3.2. The Germ of a Concept of Probabilistic Meta-Metadependence

3.2.1. State Preparations Versus Measurements

The absence of an integrated perception of the probabilistic organiza-
tion which underlies the formalism of the quantum theory not only hinders
a clear understanding of the novelties and of the problems involved in the
theory, but furthermore it entails insufficiencies inside the theory itself. The
most important among these stem from the tendency to confound the opera-
tions of state preparation with measurements, that is, to mix up temporal
orders which, quite essentially, do act. In quantum mechanics as it now
stands the degree of definition of the operations of state preparation is much
lower than that of the measurement operations. Correlatively, the mutual
characterization of operations of state preparation and of measurement
operations is very imperfect. The measurement operations are quite explicitly
represented by Hermitian linear differential operators and by a well-defined
calculus with these. The compatibility or incompatibility of two measure-
ments has been recognized and formally described, and consequences have
been drawn systematically from this. On the contrary, a general distinct
definition of what is to be called an operation of state preparation, in contra-
distinction to what has to be called a measurement operation, is uniformly
absent. A fortiori, the operations of state preparation are not endowed with
a mathematical representation clearly assigned to them. They are not even
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systematically symbolized. Quantum mechanics as it now stands does not
specify a calculus with, specifically, operations of state preparation distin-
guished from the calculus with measurement operations and related with it.
The term “‘preparation,” nevertheless, is uniformly present.

3.2.2. Superpositions of Several States Versus Spectral Decompositions of
One State

The feeble mutual individualization of state preparations and measure-
ments, combined with a fluctuating and feeble distinction between the state
vector of a microsystem and the eigenvector of an observable, entails an
insufficient distinction also between the principle of superposition (mainly
discussed by Dirac) and Born’s principle of spectral decomposition (the
expansion postulate). Indeed, though these two principles have been intro-
duced independently of one another, the spectral decompositions of a state
vector on the basis of eigenvectors determined by an observable A are cur-
rently designated as “superpositions of eigenstates of A (even by Dirac
himself).” The two concepts tend to merge into one another inside the molds
of a relaxed language. However:

A spectral decomposition |y) =}, c(y, a;)lu;) possesses the following
characteristics.

1. It is a representation that is relative, by definition, to some observ-
able A.

2. The expansion coefficients c(y, a;) are necessarily complex numbers
(if they were not, the “interference of probabilities™ via transformation to
another representation, an essential feature of the formalism, would
disappear).

a. They are in general time dependent in the Schrédinger representation.

b. The summed eigenvectors |u;> of A, in general an infinity, even a
continuous infinity, are all involved, by definition.

c. They are independent of time.

d. They are in general not normalized, and furthermore not normaliz-
able striet sensu.

e. They are mutually orthogonal by definition, {urlu;) =0, ¥(k#J).

3. Concerning “interference of probabilities™:

a. In consequence of the mutual orthogonality of the summed terms,
the scalar products {uj|y) with individual eigenvectors |u;> yield one-term
results so that for the individual probabilities 7(y, a;) we have the one-term
expressions (7)

(v, )= Kuly)I =le(y, &)
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which shows the ABSENCE of “interference of the probabilities” inside the
representation with respect to the ONE observable A itself to which the consid-
ered expansion is relative.

b. While by passage to another basis corresponding to another observ-
able B#A that does not commute with A, an “interference of probabilities”
does appear:

m(w, bi) =lc(wo, bi)l’

=3 7i5(A, B)e(wo, a;)
]

=Y |t (A, B)Ple(wo, )
i

+ [interference terms involving all the pairs of products
]fkj(A, B)IC( Yo, aj)} |T)1'¢(A: BN"—"( Vo, ak)]

This is an abstract sort of interference which is relative to a PAIR of noncom-
muting observables (A, B) and which, though it entails certain consequences
[as well as many false interpretations (see, e.g., Bohm, 1951, pp. 384-386)]
is devoid of a directly observable counterpart: the square roots ¢(y,, a;) of
all the values of the probabilities n(y, a;) of the eigenvalues a; emerging
when a measurement of the observable A is performed on a state with
state vector |y) “interfere” abstractly, numerically, in the value of each
probability z(y, b;) of an elementary event b, that might emerge if a meas-
urement of the observable B that does not commute with A were performed
on that same state. In what follows this sort of conceived interference by
transformation from a representation A to another representation B that
never coexists with A will be called interference relative to incompatible
observables.

On the contrary, a superposition of states |Wane. )= AdWa) + Aslye) +
Alw. >+ - - possesses the following as if opposed characteristics.

1. It is a representation not tied to some particular observable.

2. The coefficients of linear combination A,, A, A4, . . ., can relevantly
be chosen to be real numbers. Nothing in the formalism interdicts that. They
are fime independent.

3. It is permitted to superpose an arbitrary number—usually a small
number—of state vectors |y, |Ws), .. ..

a. They are in general time dependent in the Schrodinger representation.

b. They are always normalized.

c. In general they are NOT mutually orthogonal. However, when
in particular they are orthogonal, the scalar products {W.|Wa.. D,
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{WulWabe..), - - . acquire one-term expressions (Yol Wabe..) = Aay (Wl Wabe..) =
As, etc., analogous to what happens in the case of a spectral decomposition
for the products {u;]y). But notice that in this case, in contradistinction to
the products {u|w)=c(yo, a))=+/m(V, a;), the values of the “correspond-
ing” products {Wi|Wawe. >=, k=a,b, ¢, ...do not possess a probabilistic
significance.

4. Concerning “interference of probabilities:”

a. The scalar products {u;|ws..» with individual eigenvectors |u;» from
the basis of an observable A do not have a one-term expression, they have
a multiterm expression (¥\Was..) =Y, | ¥i), k=a, b, c,.... So when
the square modulus is calculated in order to estimate the corresponding
probability (..., a;), an “interference of probabilities” appears no matter
whether or not the superposed terms |y.,), |¥s), |W.), ... are orthogonal,
insofar as these terms are not themselves elements |u;» from the basis of A
(which can happen either in the case of a discrete spectrum or approxi-
mately). For instance, for a superposition state vector with only two terms
the elementary predictional probabilities concerning the elementary out-
comes a; for an observable A acquire the well-known “interference form”

(Wab, 47) = <l WDl
= AaCul¥a) + AsCutl )l
= AP ICul wad P+ 1A <y lw s D1
+2 Re{(Aa) (As)* Ctflya) <uflwo) *} (8)

This is a sort of interference of probabilities where the quantum mechanical
theory of transformation from the basis of one observable to the basis of
another observable is not involved, an interference that emerges “directly”
with respect to the summed state vectors for any ONE observable. So we
shall call it interference relative to the superposed state vectors and we shall
distinguish it radically from the interference relative to incompatible
observables.

b. When one considers, for a superposition state vector, the interference
relative to the superposed state vectors that concerns the position observable
A =X, then—if the spatial supports of the superposed state vectors are not
disjoint—the corresponding form of the type (8).

(Wb s %)) =<8 (x— X)) War) I
=1AaC8(x = )W) + A S (x = X)) Wa)®
= A1y + 1Pl ws(x)
+2 Re{(A)(As)*wal(x) ws(x)*} (89

Quantum Prob

is associate
space, direc
summed sta
superposed
incompatibl
such observ
of the super
acquires the

The mu
an identity b
sitions of se
of oppositios
interference
patible obse
superposed :
Now, »
stem from?
In what
structure™ o
correspondir
Conside

tied to a stal
considered s
P(w,). If th
stems from s
tion state ve
some operat
state preparz
own specific
state prepar:
other operat
and |y, th
if they had |
other two pr
ishable, (2)

together “‘on
realizable on
an initial sta



Schachter

(abe... ) T
position
ction to
espond-
abilistic

4y from
ey have
o when
ponding
0 matter
jogonal,
sis of A
\pproxi-
0 terms
iry out-
form”

(8)

chanical
basis of
lirectly”
. So we
we shall
npatible

rference

servable
are not

(8)

Quantum Probabilities 1731

is associated with the amply discussed interference patterns in the physical
space, directly observable on the domains where the spatial supports of the
summed state vectors overlap. In this sense the interference relative to the
superposed state vectors, in contradistinction to the interference relative to
incompatible observables, is not an abstract interference. The possibility of
such observable interference patterns disappears only if the spatial supports
of the superposed state vectors are all mutually disjoint, in which case (8)
acquires the degenerate noninterferent (but still multiterm) form

T (Wabs %) = Al 1Wa () + 1Ay () (8")

The mutual specificities emphasized above do not in the least manifest
an identity between spectral decompositions of one state vector and superpo-
sitions of several state vectors. Quite on the contrary, they manifest a sort
of opposition. In particular, they reveal a splitting of the central concept of
interference of probabilities. And whereas the interference relative to incom-
patible observables has an abstract character, the interference relative to
superposed state vectors is tied to directly observable effects.

Now, where do the observable effects tied to superposition state vectors
stem from?

In what follows we show that they are essentially related to the “multiple
structure™ of the operation of state preparation that produces the state
corresponding to the considered superposition state vector.

Consider for simplicity a two-term superposition state vector

W«h) = A’ﬂl w;:) =+ A‘b! Wa‘l) (S)

tied to a state preparation P(y ). If the state |y,) of the studied system is
considered separately, it stems from some operation of state preparation
P(y.). If the state |y,> of the studied system is considered separately, it
stems from some operation of state preparation P(y). If now the superposi-
tion state vector |wy,,> of the studied system is considered, it stems from
some operation of state preparation P(y,;), again only “one” operation of
state preparation since it produces the “one” pure state |y ;> that entails its
own specific quantum mechanical predictions. However, the operation of
state preparation P(y.;) somehow is conceived to “depend” on the two
other operations P(y,) and P(y,) that are tied to the two state vectors |y,>
and |y;) that would have been produced by these operations, respectively,
if they had been realized separately. Implicitly but quite essentially, these
other two preparation operations are supposed to be (1) mutually distingu-
ishable, (2) realizable separately, and (3) combinable so as to constitute
together “one” other operation, distinct from both P(y,) and P(y;) and
realizable on one previous initial state of the studied system, associated with
an initial state vector |y;> of that system.



1732 Mugur-Schachter

So—quite systematically—in the case of a superposition of state vectors
we can write symbolically

P(va) =/(P(ya), P(ys))

In essence the principle of superposition is a statement, not directly about
state vectors, but, more fundamentally, about a—past—operation of state
preparation.

(f: some function)

But these two different operations of state preparation P(y,) and P(y;)
involved in the operation P(y,;) have not been realized separately. They
have been realized only “together,” “inside” the global procedure P(y.).
So the states represented by the corresponding state vectors |y, and |y;)
also, which could have been produced separately, individually, via the separ-
ate realizations of the operations P(y,) and P(y,)—which entails that they
are normalized—have not been realized separately via P(y ). They are only
conceived of individually, in relation with the one state vector |y,s) corre-
sponding to the one realized global operation of state preparation P(y.)
(realized either by the observer or by some “natural” substitute of the
observer, as in the case of atomic states of an electron); conceived of AND
explicitly represented in the mathematical expression (S) of |y»), where they
play a role of elements of reference in the calculation of any individual
probability 7(w.,a): as can be read from relation (8), 7(yam,a;) is a
function of m(y,. a;) and 7(y,, a;). In particular, when one considers the
position observable A =X and the corresponding presence probabilities, this
reference concerns patterns of impacts observable in the physical space. The
algorithm (8) applied to the calculation of an individual presence probability
#(Wa, X;) as a function of the individual probabilities 7(y,,x;) and
n(ys, x;) permits, via (8'), a quantitative comparison between (1) the observ-
able pattern of position registrations corresponding to the realized state
represented by the descriptor |y,;) and (2) the patterns that would be pro-
duced by each of the states represented by the descriptors |y.) and |y;) if
these states acted (or effectively do act) separately on the device for the
registration of eigenvalues of the position observable.

What is designated by the term “interference of probabilities” as applied
to observable patterns of position registrations is precisely the difference
brought forth by this comparison between the two patterns corresponding
separately to |y,> and |y;> and the pattern corresponding to |y, One
sees how such patterns are essentially tied to the “multiple” structure P(ya5) =
f(P(w.), P(ys)) (f: some function) of the involved operation of state
preparation.

And notice that, remarkably, overlapping of the spatial supports of the
superposed state vectors at least somewhere in space-time (if time is left
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to increase indefinitely) is somehow related to a “multiple” structure
P(w.)=f(P(y,), P(w;)) of the operation of state preparation. Here the fact
comes somehow into play (HOW?) that in a superposition of states the
combined state vectors are time dependent, while the coefficients of linear
combination are not.

We summarize in general terms.

In a superposition representation (S), the unique physically realized
operation of state preparation is the one symbolized by the notation P(y ),
of which the unigue result is the one symbolized by the global notation
|Wap. >. This—past—operation of state preparation P(y,, ) somehow
involved, “contained,” two or more other operations of state preparation,
P(y.), P(y), . . ., mutually “distinct” and which can be realized separately.
The state vectors |y.>, |w,), ..., corresponding to the states that would
have emerged if P(y,), P(y3), . .., had been accomplished separately, are
explicitly specified inside the formal expression of the state vector |y, >
corresponding to the unique physically realized state produced by P(y,;. ).
There they play the role of elements of reference incorporated into the mathe-
matical representation: It is with respect to them that there emerges a con-
cept of interference of probabilities that is tied to patterns of position
registrations directly observable in the physical space.

This is in strong contrast with what is involved in the expression of a
spectral decomposition. There the representation does not designate observ-
able effects of a particular type of structure of the past operation of state
preparation of the studied state vector. What is represented in a spectral
decomposition of a studied state vector |y ) is the observable effects of a
future operation of measurement of an observable A performed on |y)
(Figure 2). The representation is given in terms of the projections of the
considered state vector |y ) onto—all—the abstract eigenvectors |u;), YjeJ,
of the considered observable A. Such an eigenvector |u;), according to its
very definition by the equation for eigenvectors and eigenvalues of A, is not
in general a descriptor tied to a state producible by some specific operation
of state preparation. It is only part of the mathematical representation of a
[framework for the qualification of quantum mechanical states, a framework
introduced by the observable A. Namely, the eigenvectors |u;), VjeJ, define
a family, specific to this observable A, of “directions of qualification,” of
“semantic directions” (unidimensional, in the absence of degeneracy) each
one of which is associated with an observable eigenvalue of A. In general
these semantic directions are only tangent to the Hilbert space that contains
the state vectors |y ); they are exterior to this space, images of elements
endowed with a primary definition only inside the dual of the Hilbert space
of the system. By a function (involved in a linear functional on the space of
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the states) the eigenvector |u;) corresponding to an eigenvalue a; of an
observable A qualifies some feature (which one exactly?) of the same global
factual situation that is also qualified by the eigenvalue a;. As to the eigen-
value a; itself, it qualifies the individual observable outcomes V), with
fa(V}) =g of the elementary quantum mechanical chain experiments, which,
in their turn, via the corresponding probabilistic metaqualifications #(y, a;),
qualify globally what is called a “quantum mechanical state” and is represen-
ted by a state vector |y ). We sum up:

A spectral decomposition |W>=Zj c(y, a))lu;y is referred to a future
operation of measurement of an observable A, upon the studied—already
prepared—state vector |y ). Each eigenvector |u;» of A is a descriptor of a
particular qualification from a whole framework for qualification introduced
by A, a framework that is defined on the whole space of the state vectors.

Though a descriptor |u;) is utilized for calculating the probability of an
outcome f1(¥))=a, for any given state vector, there is nothing probabilistic
in this descriptor itself. The descriptor |u;) is tied to one eigenvalue g; (in
a nondegenerate situation), so it points toward an essentially individual
predication. There is no reason whatever to require normability for the mathe-
matical descriptor |u;>, as for the state vectors |y ), which—by definition—
generate probability measures. Quite on the contrary, this would simply be
grossly inadequate from a semantic point of view.

Correlatively, the spectral decomposition with respect to one observable
A—Dby itself—entails no interference of probabilities, neither observable nor
abstract. An (abstract) interference of probabilities tied to spectral decompo-
sitions arises only by transformation from the basis of one observable A to
the basis of another observable B that does not commute with A.

Since the eigenvectors are descriptors with individual meaning, the
“problem™ of normalization of the eigenvectors of observables with continu-
ous spectrum is a false problem. So the “resolution” by the construction of
state vectors yielding approximated normed representations of eigenvectors
is a resolution without a corresponding problem, just noxious, mathemati-
cally generated semantic fog that masks under a veil of superficial uniformity
a radical solution of continuity, in the space of the concepts, between eigen-
vectors and state vectors. Even the standard theory of probabilities rejects
(implicitly of course) the confusion between eigenvectors and state vectors.
This, for instance, is illustrated by very interesting remarks by Cohen
[Cohen, 1988, pp. 991-992, equations (54)-(59)]. In order to understand
deeply the veritable problem involved in the quantum mechanical description
of measurements, in order to formulate it in better analyzed terms and to
form a veritable answer to it, the conceptual difference between the designata
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of the eigenvectors and those of state vectors has to be recognized as essen-
tial, to be specified, and to be set at the bottom.

In short, the code is in essence as follows for distinguishing between the
factual counterparts of, on the one hand, the superposition writings, and on
the other hand, the spectral decompositions:

1. A linear combination of an arbitrary number of (in general) time-
dependent and mutually nonorthogonal “state” vectors of a system S, all
normalized, that is not relative to some observable and that can, in particular,
be relevantly written with real coefficients, can be regarded as: The formal
expression of the result of one operation of state preparation somehow
“depending” on (referrable to) other (two or more) operations of state
preparation, individually realizable but not individually realized, and which
are such that if they were individually realized, would produce the states
corresponding to the linearly combined state vectors.

2. A linear expansion of one normalized “‘state” vector, on the basis of
all the mutually orthogonal and (in general) infinitely numerous and nonnor-
malizable “eigen”vectors of an observable A, with complex and time-depen-
dent expansion coefficients, can be considered as: A formal expression of the
qualification of the physical state represented by that state vector, inside the
framework for qualification of any quantum mechanical state introduced by
the observable A; namely, a probabilistic qualification of the state by the
probability densities |c(y, @;)]*=|{wly>’ of the observable outcomes
Jal¥;)=a; of the quantum mechanical elementary chain experiments per-
formed with that state and with the measurement evolutions M, for A.

In particular, it can happen that the spectrum of the considered observ-
able A is intrinsically discrete (Hamiltonian of a bounded state or a kinetic
momentum). This entails then an identification of each eigenvector with a
state vector of a preparable state [which involves then also a definite finite
norm for the eigenvectors, as well as mutual orthogonality, and independ-
ence of time for the ensemble (a discrete infinity) of these *“eigen-state vec-
tors”]. Nevertheless, even in these particular situations which introduce for
each eigenstate vector a cumulation of two distinct roles, the conceptual
difference still quite fully subsists between the designatum of a superposition
of several eigenstate vectors on the one hand (way of preparing the superpo-
sition state vector), and on the other hand the designatum of a decomposi-
tion of a state vector along the whole infinity of eigenstate vectors from the
basis of eigenvectors of the considered observable (way of qualifying that
state vector). And the existence of this difference continues to be even for-
mally disclosed by the subsistence of the possible relevance, or not, of real
coefficients.

So the code explicated above always avoids confusion between superpo-
sitions and spectral decompositions. (The removal of this confusion might
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lead to a clear understanding of the superselection rules. It might also clarify
the significance of conceptually rather obscure perturbation methods used
for the calculation of the spectrum of the energy of quantified systems, etc.)
But resort to the code ceases to be necessary as soon as one is in possession
of the concept of probability tree. By the simple contemplation of the figure
that represents a tree, it becomes obvious that the superpositions concern the
primary operation P(y,) of generation of an object for subsequent examina-
tions, while the decompositions concern the secondary operations M, of
qualification of this object (Figure 2). It jumps to the eye that these two
concepts concern essentially different phases of the genesis of the quantum
mechanical events, placed at two different temporal levels of a tree, imbedded
in different space-time domains and possessing essentially different cognitive
roles.

3.2.3. The Germ of a Calculus with Whole Probability Trees ( Probabilistic
Meta-Metadependence)

The quasiconfounded treatment of superpositions and of spectral
decompositions hides the important fact that, in a certain sense, a superposi-
tion of states—but not also a spectral decomposition—involves a germ of
a calculus with several probability trees, globally considered.

Consider a state vector |y )» which is instructionally defined by the speci-
fication of only one preparation procedure P(y). Then the probability meas-
ures from the observational spaces (3') of the corresponding probability tree
are completely specified by reference to the only one state vector |y ) tied to
the unique operation of state preparation P(y) (for simplicity we suppose
measurements directly on the prepared state |y ), i.e., we consider the par-
ticular case t — =0, |y > =|yo) ). For example, in (3") , the measure z(y, a;)
is calculable on the basis of the postulate (2), #(y, a;) = |<u;|w >, by making
use exclusively of the state vector |y ). But the situation changes if we con-
sider a superposition state vector

[Was) = AdWa) + Aslws)

(as, for example, in the case of Young interference). Then—physically—the
corresponding preparation P(y,;) still introduces only one state |y,;>, so
only one probability tree. Nevertheless, as has been stressed, the probability
measures from the observable spaces (3) of this unique tree are now calcula-
ted by reference to, also, the two state vectors |y,» and |y;)> from the
mathematical expression of |y >. This happens algorithmically, via the com-
bination of (a) the additive quantum mechanical representation of the state
[w.> by a superposition writing, (b) the spectral decomposition writings,
and (c) the probability postulate (2). Indeed, when according to (S) and (2)
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the measure 7(y.s, @;) has to be calculated by the use of the relation (8),
7 (Vans @) = Al |5 W[ + 12l 1<l W DI
+2 Re{(Aa)(As)* Sl w ) Sufyo) *}
or, in particular, (8'),
(Wb %) = |Aal 1Wal) P + 12l
+2 Re{(42)(26)* wa(x;) Wa(x,)*}

then three probability trees are brought into play—globally—namely the
unique tree .7 (y.) physically generated by the unique physically realized
preparation P(y,,) and the two trees 7 (y,) and 7 (y,;) corresponding to
the two preparations P(y,) and P(y,) on which the preparation P(y.,;) =
J(P(w.,), P(y;)) “depends”—considered separately—which have not been
realized individually, but, being reflected in the writings by the specification
of their possible individual results |y,> and |y,), act there as a conceptual
reference. In fact, what is brought into play is a structure of three mutually
consistent rules of *“*formal composition,” namely the rule of composition of:

1. The reference-preparation operation P(y,) with the reference-prep-
aration operation P(y,): Some definition of the function f(P(y.,), P(w)=
P(w.)) and of its physical counterpart are supposed to “exist” : this supposi-
tion in fact constitutes the essence of the principle of superposition. However,
this basic definition is not spelled out inside quantum mechanics as it now
stands.

2. The reference-state vector |y,> corresponding to the preparation
operation P(y,), with the reference state vector |y,) corresponding to the
preparation operation P(y,) [the additive rule (S)].

3. The corresponding reference-observable probability measure
|Aeuwapl, with the reference observable probability measure |A,{u|ws)®
[the quantum mechanical algorithm (2+8)=(8)].

Globally, what comes here in implicitly is a complex algorithm of formal
composition of the two only conceived reference probability trees 7 (y,)
and 7 (), such as to yield, by a sort of “probabilistic dependence” defined
between entire trees, precisely the result postulated by the relation (2) for the
probability measures from the unique tree 7 () which is physically real-
ized. Such an algorithm amounts to endowing the mathematical representation
assigned to each level of the unique physically realized tree (operation of
state preparation, prepared state vector, observable probability space), with an
incorporated reference to the corresponding level of the two other, only con-
ceived trees.

Obviously, such a representation, endowed with such a reference, trans-
gresses essentially the concept of one probability tree; it involves certain
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metaqualifications with respect to the qualifications which can be expressed
inside the nonreferred representation of one single tree. We are here in the
presence of a probabilistic meta-metadependence with respect to the present
standard concept of probabilistic dependence (since the quantum theory of
transformations involves already—inside a unique tree—a sort of probabilis-
tic metadependence with respect to the probabilistic dependence in the sense
of the theory of probabilities as it now stands). Only if this probabilistic
meta-metadependence, globally considered, is taken into consideration also
does it become possible to try to encompass the whole significance of the
quantum mechanical principle of superposition.

Thus, inside quantum mechanics as it now stands, the germ of certain
algorithms can be discerned corresponding to an implicit calculus with entire
probability trees. This happens each time that superposition states are repre-
sented. (This happens also each time that successive measurements are repre-
sented. But then the conceptual insertion is different: Instead of the principle
of superposition, the projection postulate acts at the bottom, identifying the
operations of preparation in the general sense, with the particular category
of preparations by measurement evolutions. This distorts the topology and
flattens the volume of the conceptual space involved.) However, with the
implicit and incomplete quantum mechanical calculus with entire probability
trees we penetrate into this confused frontier zone—which always does
exist—where the representations already elaborated by a theory plunge into
the still unconceptualized.

The basic lacuna is that the operations of state preparation are devoid of
mathematical representation.

This is a lacuna of which the consequences mark the intelligibility of
the whole orthodox formalism. Below we compensate for it.

4. OPERATORS OF STATE PREPARATION AND THE
PRINCIPLE OF SUPERPOSITION

4.1. Operators of State Preparation and Their Calculus

What operators and what calculus with these can be defined in order
to represent mathematically the physical operations of state preparation in
a way that is consistent with the orthodox formalism as it now stands?

Suppose that G(y) (G: generator) is an operator that represents mathe-
matically the operation of state preparation P(y). For consistency with the
linear formalism of quantum mechanics let us require G(y) to be a linear
operator. Then, to represent mathematically the preparation of the states
with state vectors |w,>, |ws), and |w.> = Alw.> + 45| w, ), we have to write,
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respectively, for any choice of some initial state vector |y,),
Gyalyn=Ive),  GudlvD=Ive), GWa)lVD=IVaw)

[read: G(,) acting on some—any—previously existing state with state vec-
tor |y;> (known or not) generates out of it the state with state vector |y,
etc.]. The unknown functional relation f from the representation P(y ) =
f(P(w,), P(w;)) concerning the three factual operations P(y ), P(y.,), and
P(y,) involved in the preparation of a superposition state vector |y, =
AdWa) + Ay will somehow translate into a formal relation g, G(y )=
2[G(y,), G(w)]. To find the translation, we write down the conditions, in
agreement with the linearity required for the G(y),

GWa)lW> =Vas> =AdWa) + Aelws) = 2G(Wa) W) + AG(wi)lwid
=[.G(y.) + 4:G(yp)lly (€))

The function g that connects the operators G(W.p), G(w,), and G(y,;) is the
same linear combination that connects the state vectors |Wap), |Wa), and |wp).
So in general terms

g[G( Wa)‘ G(Wh)s G( w‘r)‘ .- ]=G( 'p‘aba..)
=Y uG(we), k=ab,c,... (10)

Furthermore, since for the well-known quantum mechanical operator of
projection onto |y ), P, , we have P, |y > =y >{w|w:>, ¥Y|lw,>, while by defi-
nition G(y)|y,>=|w), we can write

G(y)=(1/<yly>)P, (11)
which we shall call a “normalized projector” onto |y >:

A “normalized™ projector P, yields an adequate representation for the
concept of an “operator G(y) of state preparation” such as it is required

by (10).

From (10) and (11) it follows that for a superposition state vector |Wa..»
we can write

G (Ware )= (1/<Ware V> )Py
=(Z)~k/(%!vr>)f’w k=a,b,c,... (12)
k

The aperator of preparation of a superposition state vector can be repre-
sented mathematically by a linear combination of normalized projectors.
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Which includes automatically the particular case of preparation by a meas-
urement evolution M, posited by the orthodox projection postulate: In that
case the state preparation operator becomes indeed (1/<uwly:) )Py, where
|lu;» is the eigenvector of the observable A corresponding to the registered
eigenvalue a;. But it has to be clearly realized that in the formalism as it
now stands the projectors P, are not utilized with the fundamental role of
general formal representatives of the operations of state preparation. The
projectors P, are utilized currently in the algorithms connected with meas-
urement operations [density (or statistical) operators].

The definition (11)+(12) has interesting implications concerning the
coherence between the semantics to be assigned to the formal feature of
commutativity of two linear operators and the nonformalized qualification
of “compatibility” drawn from the current language:

For consistency with the linear formalism of quantum mechanics we
have required linearity for the operators of state preparation. This entailed
the necessity, in (12), of a linear superposition of distinct, so noncommuting
normed projectors Py, P,,, ... that shall all act on one same initial state
vector |, while two commuting projectors—which reduce in fact to one
single projector—cannol generate a superposition state vector because they
(it) cannot represent the required distinct actions on one same initial state
vector |y, ). In this sense:

For the mathematical representation of the process of generation of a
superposition state, distinct and noncommuting operators of state preparation
are “‘compatible™ operators.

This is as if “opposite” to what happens for the mathematical representation
of the operations of measurement of dynamical quantities: two dynamical
operators, as is well known, are considered to be “compatible” when they
commute, while if they do not commute they are considered to be
“incompatible.”

Now, we have emphasized that in the case of the representation of
measurement operations, the factual counterpart of the “compatibility” of
two—commuting—dynamical operators A and B consists of the possibility
of individual measurement evolutions M, for A and B possessing one com-
mon space-time support. This is what entails the possibility, from each (one)
registered “needle position” ¥; that has been the unique factual observable
outcome of one given reiteration of a measurement evolution M 4, to calcu-
late a pair of two correlated eigenvalues ;= fa(¥), by=fu(¥;) (which is
verbally designated as the possibility of a “simultaneous’” measurement of
the observables A and B). While if A and B do not commute, the individual
measurement evolutions M for A and M for B possess necessarily distinct
space-time supports, which is designated by the assertion that “simultaneous
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measurements for A and B are not possible” (the factual substance of Bohr
complementarity).

In short: When exclusively measurement operators are considered, the
two qualifications “commuting” and “compatible” apply to the same suben-
semble of operators, so that they tend to be identified. But when also normal-
ized projectors as representatives of operations of state preparation are
considered, the domains of application of these two qualifications separate.
So a new language emerges which concerns a more complex situation. We
shall now establish explicitly this new language. Take into account:

1. The usage of language found above and the corresponding designata
for the case of measurements.

2. The fact that two different projectors do not commute, while two
commuting projectors become identified.

3. The fact that the different projectors involved in the preparation
of a superposition state represent individual operations that are physically
different and, nevertheless, can all act on one same initial—individual—
factual situation corresponding to one same initial quantum mechanical state
vector |y).

4. The systematic distinction between abstract descriptor and its phys-
ical designatum.

5. The systematic distinction between (a) the individual level of descrip-
tion (where are placed the various individual realizations of an operation of
state preparation, or of a measurement evolution, or of an elementary chain
experiment), and (b) the metalevel of probabilistic description (where is
placed by definition the quantum mechanical concept of state vector |y))
and, correlatively, the concept of “one” (complete) quantum mechanical
measurement involving a whole ensemble of elementary chain experiments.

6. The requirement of one same stable language valid no matter
whether measurements or state preparations are described.

The elements listed above entail together the following rather complex
dictionary.

1. “Compatibility” or “noncompatibility” of two linear operators
(dynamical or not): respectively, the relevance or not of the action of both
these operators on one INDIVIDUAL realization of a state of the studied
system corresponding to one given quantum mechanical state vector.,

2. “Commutativity” or “noncommutativity” of two linear operators
(dynamical or not): respectively, the identity or the disjoint character of the
space-time supports of the individual physical operations represented by
these two operators.

3. Multiplicative composition of the action of two (or more) commuting
dynamical operators upon one given state vector |y ): mathematical expres-
sion of the factual identity of two (or more) processes of qualification of any
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one individual realization of a state of a system corresponding to |y), via
one common sort of individual measurement evolutions M 4 _ realizable on
one same space-time support, but of which the—one, common—factual
observable outcome ¥}, once it has emerged, can be then conceptually worked
out in various ways, a;= fa(V;), b;= fa(¥}), etc. (which justifies the above
somewhat misleading wording “two or more” processes of qualification).

4. Additive composition of two (or more)—necessarily—noncommut-
ing operators of state preparation (normalized projectors) upon one given
initial state vector |y,>: mathematical expression of the generation, out of
any one realization of an individual factual state of the studied system tied
to the quantum mechanical state vector |y,», of one realization of a new
factual state of the studied system tied to a new quantum mechanical state
vector |wo) via the action of two (or more) factually different processes of
“preparation” possessing disjoint space-time supports, all these processes
being posited to end at a same moment, which is the initial moment 7, of
the newly prepared state vector |yo) =|w(f)).

With this dictionary, we can now say that:

In the case of the representation of an operation of state preparation

G( Wabr...) = (] f( Wm'n.-___l W;) )PW;-.br :
=Y (A/S¥ilv ) )Py;, k=a,b,c, ...
k

that generates a superposition state |Wa..) =2, (A&lys), the distinct non-
commuting normalized projectors (1 /{Wa._|W:> )Py, that are involved corre-
spond to compatible physical actions of which nevertheless the space-time
supports are disjoint.

So quantum mechanics permits (could we even say that it requires?) a
certain coherent prolongation of its formalism and its language, where the
operations of state preparation (all of them, not only those consisting of
measurement evolutions M) are mathematically represented by operators
of state preparation G(y) that are normalized projectors combined accord-
ing to a specific calculus entailed by the fact that the space of the normalized
kets |y is posited to be a vector space. This calculus with operators of state
preparation is distinct from the calculus with dynamical operators, which
represent measurements and are tied to the principle of spectral decomposi-
tion. This finally demonstrates that the formal structure of the quantum
theory by no means entails the orthodox flattening identifications between
preparations and measurements and between superpositions of several state
vectors and spectral decompositions of one state vector: It rejects them in
fact, if we go to the bottom.
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The definition (11)+(12) of operators of state preparation effaces the
lacuna in the rules of combination of two or more probability trees regarded
as wholes. So the implicit quantum mechanical calculus with whole probabil-
ity trees, expressing a new probabilistic concept of probabilistic meta-meta-
dependence, is now entirely explicated. But the most important consequence
is the elucidation of the physical significance of the principle of superposi-
tion, stated below.

4.2. The Minimal Model Involved by the Principle of Superposition

In quantum mechanics as it now stands the mathematical expression of
the principle of superposition is referred exclusively to the state vectors. This
is misleading. Indeed—fundamentally—the principle of superposition refers
to operations of state preparation. And the definition (11)+(12) is equiva-
lent to a deepened reformulation involving now explicitly these operational
roots also. This permits progress concerning the physical implications of the
principle.

Consider a two-term superposition state vector |W.s> = Au|Wa) + As| W5 ).
We have shown that in order to represent mathematically the operation of
preparation of |y ,;» we must make use of a normalized projector

(1/<Warl YD )Py = (Aa/<Wa¥ i) )Py, + Ao /Wil W DPy,

that is a linear combination of two distinct normalized projectors
(1/<w.w»)P,, and (1/{y,|w,>)P,, which act on one initial state vector
|y;> out of which they generate |y ;) :

[((Aa/<Wd W) Py, + A/ WalW Py JIVD) = Was)

We have also shown that this mathematical representation involves the
assumption of “compatibility” of the physical processes described by the
two operators (1 /{y.y:> )Py, and (1/{ysy;) )Py, in a definite sense which
concerns the space-time features of the mentioned processes. Now, in conse-
quence of the conditions of norm, the two spatial domains Al )=
A(a) and A(ly,|°, )= A(b), where |y, and |y;), respectively, yield presence
probabilities that are not quasinull, are finite with respect to any fixed defini-
tion of quasinullity. And, since the current formulation of the principle of
superposition asserts that the state represented by |y, can be created for
any pair |y,> and |y,), we are free to imagine in particular that |y.(x, 1))
and |y,(x, 1)) are such that, at a given time ¢ (in the observer’s referential)
the two spatial domains A(a, t) and A(b, t) are disjoint and the (purely
spatial) distance that separates them is very big, say, of the order of light-
years. Nevertheless, as it is explicitly expressed by the new expression of the
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principle of superposition

[(Ae/{WalWid )Py, + A/ Wl W OPY WD = Was)

quantum mechanics still assumes that there does exist an initial state
vector |w(x, t')), ' <t, of the ONE considered “system,” such that the two
preparation processes represented by the two mathematical writings
(1/<waw>)P,. and (1/{ysly:>)P,, can both take place “compatibly” on
each-individual realization of a factual state corresponding to the state vector
lwi(x, t')). But this is a model (Figures 1 and 2):

The principle of superposition associates to the entity called “one”
quantum system a model according to which an individual factual realization
of a state of this entity can be such that—whatever be other nonspecified
qualifications of it—this state covers an arbitrarily big spatial domain, not-
withstanding that in some (nonspecified) sense a quantum system is con-
ceived to be also “microscopic” (it is even often called “one microsystem™).

Horrible dictu, but the orthodox formulation, though it proclaims inter-
diction of any model, in fact is itself founded on a model. And this model,
while on the one hand it violates the natural slopes of the connection between
what we would agree to call a microsystem and the designatum forced upon
us by the principle of superposition, on the other hand is not achieved, not
worked out. In this sense it is a “minimal” model. Camouflaged loosely
inside the conceptual volume delimited by its noncommittal absence of full
specification, this minimal model fluctuates there implicitly leading to con-
fusion and perplexity. Whether it is explicitly declared or not, this minimal
model is there, encapsulated into the principle of superposition. And it acts
on our speaking and on our thinking. It literally invades them in the form
of problems and paradoxes that haunt the quantum theory ever since it
appeared. “Schrodinger’s cat” or more abstractly “the reduction problem,”
as well as the “locality” problem, are only the most striking distillations and
scandalous amplifications of consequences of this hidden unfinished model.
Only further specifications could remove the ambiguities that emanate from
this model, and perhaps thereby also its queerness.

5. A MEASUREMENT THEOREM

We have brought forth a radical distinction between, on the one hand,
preparations and superpositions of several state vectors, and on the other
hand, measurements and spectral decompositions of one state vector. We
shall now try to understand more clearly how these two distinct pairs of
concepts are related.
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Bohm (1951), de Broglie (1956), Park and Margenau (1968) (in their
study of the “time of flight” method for the measurement of the momentum
observable), as well as other authors, have already strongly and variously
emphasized that an evolution law of the descriptor |y (x, 1)}, if it is “good”
for producing “measurement evolutions’ M of the first kind for an obsery-
able A, possesses specific characteristics. Nevertheless, quantum mechanics
as it now stands does not introduce an explicit general definition of the
operator of evolution H, to be tied with the individual measurement evolu-
tions M, corresponding to a dynamical observable A. It only supposes
implicitly that, given a “physically significant’” quantum mechanical observ-
able A (as is well known, not any quantum observable is measurable), such
an operator H, can be found for A. Below we introduce a condition that
ensures some of the characteristics identified by other authors.

Condition CH,4. A quantum mechanical evolution operator H, can be
connected with the individual measurement evolutions M of the first kind
corresponding to a quantum mechanical observable A only if it works like
an operator

(/< Ol (x, 03 1P =Y [y, @))|e™? /<Py (x, )W (x, 1)) Pays, 1y
j

of preparation, out of the studied state vector |y/(x, f)), of the superposition
state vector

lx(x, =Y le(y, @)le" P\ (x, 1)), 1>t
J

where (a) |®;(x, 1)), for any j, is a normed eigendifferential corresponding
to an eigenvector |;(x)) of A, (b) the coefficients of linear combination
reproduce the real parts |c(y, a;)| of the expansion coefficients c(y, 1, @)
from the spectral decomposition |y(x, 1)) = =Y, c(y, 1, @)l (x)) of the stud-
&dstate vector |y(x, 1)) on the basis of e:genvcctors [;(x)> of A, the factors
“Y being arbitrary (in particular these factors can reproduce those from
the e(y, 1. a;), or, alternatively, they can be all set equal to 1, thus introduc-
iﬁg':a:‘sﬁperposition with real coefficients); and (c) the spatia! domains
A;(x, t') where the presence probabilities corresponding to the state vectors
|®;(x, 1)y are not practically zero become mutually disjoint up to an
approximation that can be improved without limitation by increasing ¢'.

This condition requires H, such that out of the studied state vector
|w(x, 1)) there shall materialize approximately in the physical space, at times
'>1, the—abstract—spectral decomposition of |y(x, t)> on the basis of

eigenvectors of A.
The condition CHy, if it is realized, entails the following theorem.
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Measurement Theorem MT. The event “registration for |y(x, 1)) of an
eigenvalue @, of A” can be represented by the event [“registration for
|z (x, £')) of the presence inside the domain A, (x, 1')"]=[xeA;(x, )], in the
following sense. The numerical equality

n(y, a)=n(xel;(x, 1))

where 7(y, a;) and m(xeA,(x, 1)) are, respectively, the quantum mechanical
probabilities of the first and the second event specified above, is realized
with an arbitrarily improvable accuracy for any measurement evolution M,
of the first kind.

Proof. Consider the superposition state vector
lx(x, 1))=Y le(w, a)le™|®;(x, 1)), 1>t
i

as defined in CH,. At any individual space point x we have for |x(x, 1)) a
presence probability which (at most) is reduced to only one term

7, 2) =2 (%, OF =1e(y, ale“®y(x, ) =le(y, a)1®y(x; )

where the index g designates, among all the disjoint spatial domains A;(x, 1'),
the one to which the considered point x belongs. Then the fotal quantum
mechanical presence probability inside the domain A,(x, 1) is, from the
expression of 7(x, x) and because of the norm 1 of the |@;(x, 1)),

x(xeA(x, ,-))=J' G, OF dx=le(y, ap)l fum.,(x, O)F dx=le(y, ap)f
A,

which by the postulate (2) is also the quantum mechanical probability for
the realization of the eigenvalue a,. This is true only approximately but
with an accuracy which according to CH, can be improved arbitrarily by
increasing 7', i.e., by improving the mutual disjunction of the spatial domains
A;(%, ) and so the mutual orthogonality of any two distinct state vectors
|®;(x, £')) and |®(x, 1')). So, with an arbitrarily improvable accuracy, we
have indeed

m(xeAx, D) =le(w(), a)’ =n(y(1),a), >t W

This proof, trivial as it is, establishes a crucial connection between the
two fundamentally distinct concepts of spectral decomposition and of super-
position of states. More, in fact. It establishes for the general quantum
mechanical predictional postulate (2)

(. @) =Kyl = Kuly O

¥
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an “explanation” deduced from the condition CH , and the particular accept-
ance of (2) concerning exclusively the position observable, 7(y, x)= lw (X))
And notice that the deduction is founded upon the distinction between spec-
tral decompositions of one state vector and superpositions of several state
vectors.

Via the condition CH 4 and the theorem MT the spectral decomposition
of the studied state vector |y(x, t)) with respect to the eigenvectors of a
measured observable A appears as only an abstract conceptual prefiguration
of the superposition state |x(x, 1)) actually prepared in the physical space,
at later times ¢ > ¢, by the quantum mechanical operator H, of measurement

evolutions M4 .

By a rotation inside the Hilbert space of the system the measurement
propagator H, brings asymptotically the conceptual spectral decomposition,
with respect to the eigenkets of A, of the studied state vector |y(x, 1)),
down onto the physical space. The abstract “disjunction™ represented by the
spectral decomposition |y(x, 1)) = 2 ey, t, a;)lu;(x)) distinguishes inside
|w(x, 1)) between the elements of a famﬂy of mutually exclusive “how’s”
represented by eigenvectors |;), no matter where in space-time, since
{uduy) =0 for j#k, but the |u;) are time independent and in general distinct
;> do not possess disjoint spatial supports. The measurement propagator
H, transposes this abstract disjunction into a “disjunction” in the physical
space, represented by the superposition state vector

lx(x, )>=Y le(y, a)le™|®;(x, 1)D, >t
i

that distinguishes between the elements of a family of mutually exclusive
“where’s.” the A,(, 1), while how is that what populates the disjoint spatial
domains A,(x, 1) is devoid of pragmatic significance: With respect to the
pair of qualifications how-where, the initial situation and the final one are

6. CONCLUSION

We have constructed an integrated view concerning the probabilistic
organization of the quantum mechanical formalism. This view brings in four
hierarchically connected descriptional levels:

1. The elementary quantum mechanical chain experiments (egmce).

2. The basic probability chains (1), (5), which are metastructures with
respect to the elementary quantum mechanical chain experiments.

3. The probability trees of a state preparation .7 (P(yy), |y ) ), which
are metastructures with respect to the basic probability chains (1), (5).
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4. Linear superpositions of probability trees which are metastructures
with respect to the probability trees, namely compositions of several entire
probability trees entailed by the principle of superposition (we do not
mention the quantum mechanical algorithms representing successive
measurements which, by use of the projection postulate, identify confus-
ingly the preparable states of a microsystem and the eigenfunctions of an
observable).

The integrated view concerning the probabilistic organization of quan-
tum mechanics has acted as an instrument for critical analyses and for
constructive developments.

The quantum mechanical calculi as well as the verbal accompaniments
of these convey only very mutilated indications concerning the underlying
probabilistic organization of the formalism. Vectors, operators, equations,
probability measures, and operational definitions of measurements are
manipulated according to algorithms. But the more global concepts of an
elementary quantum mechanical chain experiment, of a random phenom-
enon (4), of a basic probability chain (1), (5), and of a probability tree

T (P(wo), w)), with their formal features and their specific semantic con-
tents, seem to have remained not perceived. Not even the algorithmic shadow
(1) of only an isolated basic probability chain (1), (5), has been clearly
recognized as a probabilistic whole. A fortiori, the distinction between formal
entities and factual entities remained so dispersed and so vague that the
central connecting role of the identities (7) has not been realized fully. This,
no doubt, is due to the particular complexity of the random phenomena
studied in quantum mechanics and to the unusual potential-actualization-
actualized nature of the roots of the elementary events produced by these.
The conjunction of these two characters acted as a barrier. We have over-
come this barrier by a systematic reference to the basic concepts of the
abstract theory of probabilities, by an explicit specification of the cognitive
operations by which the “observer,” the “conceptor,” produces the entities to
be qualified (quantum mechanical states) and the processes of qualification of
these (measurement evolutions), and by taking into account systematically
the space-time aspects of all the phenomena involved.

This same sort of approach, resumed on a quite general level, has led
us to a “general method of relativized conceptualization” (Mugur-Schichter,
1992d). This general method—a genuine “epistemic syntax”, permitted us
to return reflexively upon quantum mechanics wherefrom it stems and to
further decode its semantic conducts and sharpen its algorithms (Mugur-
Schéchter, 1992¢). Most important perhaps, it permitted us to clearly define
the conceptual status of the quantum theory and to progress toward a model
unifying quantum mechanics and relativity (Mugur-Schichter, 1992c,
1992f).
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