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A formal $ystem of "questions" and "propositions" conceived by C. Piron and
claimed to yield by interpretation quantum mechanics as well as all other known
physical theories is examined. It is proved that the mentioned system is syn­
tactically self-consistent in the sense of the theory of models. However, it is
found that the mentioned formal system possesses certain syntactic charac­
teristics in consequence of which qualification of this system as a generator
of quantum mechanics by interpretation encounters semantic obstacles so
grave that they annihilate any relevance of such a qualification.

1. INTRODUCTION

Various authors have tried to produce a formal system of propositions able
to yield quantum mechanics by interpretation. (1-4) Among these attempts,
the one by Jauch and Piron is certainly the most elaborate and suggestive.
However, it has encountered a serious criticism: one of the axioms of the
system, asserting the existence of a "product proposition" a 1\ b for any
pair (a, b) of propositions from the system, is devoid of semantic definability.
Recently Piron has proposed a new formal system of "questions" and
"propositions" claimed to eliminate this deficiency. Moreover, this system
is claimed to be able to yield by interpretation quantum mechanics as well
as any other known physical theory, thus offering a general syntactic scheme
for physical theories of any kind.

In this work it will first be shown that Piron's formal system is self­
consistent in the sense of the theory of models. However, it will also be
shown that its relevance as a syntactic scheme for physical theories cannot
be accepted. Indeed, by a succession of three theorems it will be brought
into evidence that one of the axioms of the system asserts the "existence"

1 Laboratoire de Mecanique Quantique de I'Universite de Reims, France.
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of a class of propositions for which neither a syntactic method of construction
is explicitly available inside the system, nor can a semantic definition be found
in consistency with the semantic content assigned to the corresponding
descriptive elements from the quantum mechanical formalism. Under such
conditions it will be concluded that, as a syntactic scheme for the generation
of quantum mechanics by interpretation, the formal system proposed by
Piron so far has not attained its aim.

D8 (equivalent questions). If one has f3 < y and y < f3, then f3 and yare
equivalent questions, which is denoted by f3 ~ y.

D9 (proposition). The equivalence class containing the question f3 is
called proposition and is noted by b. The set of all the propositions defined
for a system is symbolized by .P.

DIO (true proposition) (see Ref. 6, p. 291). The proposition b is true iff
the question f3 of which b is the equivalence class is true (in the sense of D6).

2 Not explicitly defined in Ref. 5.

Theorem T I' The set of propositions .P is a complete lattice, i.e., there
exists for any family of propositions {bi}ieJ a proposition I\J bi such that

We do not reproduce the proof of Tl' However, we remark that the
formulation in Ref. 5 ofTl as well as its proof imply certain (usual) notations
and concepts that have not been explicitly defined previously (I\J bi , X < bi ,

V J bi for propositions). The structure of the proof ofTI implies the assumption
of the following well-known meanings for these concepts and notations:

On (order relation between propositions) (Ref. 6, p. 291). If one has
Vf3 E b, Vy E c: f3 < y, then the proposition b is stronger than the proposition
c, which is symbolized by b < c.

D12 ("product" or "conjunction" of propositions). Given any family of
propositions {biLeJ from .P, I\J bi denotes the equivalence class containing
the question III f3i , where f3i E bi .

D13 ("sum" of propositions). Given a family {bi}ieJ of propositions
from .P, V J bi denotes the product Ax x~of all the propositions x~E .P such
that bi < x~ , Vi.

D14 (absurd proposition, trivial proposition).2 Theorem T1 entails the
existence of an absurd proposition I\be2 b = O. The equivalence class of
the trivial question I defines a trivial proposition I (same notation as for the
trivial question).

015 (complementary proposition for b). The proposition c is a comple­
mentary proposition for a given proposition b if b v c = 1 and b /\ C = O.

016 (compatible complement for b). The proposition c is a compatible
complement c = b' of a given proposition b if it is a complementary proposi­
tion for b and if furthermore there exists a question f3 such that f3 E band
f3- E C •.

2. THE FORMALISM

We begin by reproducing the formalism to be examined. In order to
facilitate any comparison, we give here nearly a literal transcription from
Ref. 5 (pp. 19-29). Any reference to another work will be explicitly men­
tioned. For maximal clarity, we take the liberty of assigning a notation to
each of the concepts introduced, without regard to logical dependence.

Definitions, Axioms, Rules, Theorems

DI (physical system). A physical system is a part of the real world,
thought of as existing in spacetime and external to the physicist.

D2 (question). A question is any experiment leading to an alternative
of which the terms are "yes" and "no."

D3 (opposite or inverse question). If ~ is a question, ~- is the question
obtained by exchanging the terms of the alternative.

D4 (product of questions). If {~i}ieJ is a family of questions, IlJ ~i is
the question defined in the following manner: one measures an arbitrary
one of the ~i and attributes to IlJ ~i the answer thus obtained.

Rule Rl (opposite of a product question). By starting from the definitions,
one can verify the following rule: (Ill (Xi)- = III ext.

Ds (trivial question). There exists a trivial question I which consists in
measuring anything (or doing nothing) and stating that the answer is "yes"
each time..

D6 (certain or true question). When the physical system has been prepared
in such a way that the physicist can affirm that in the event of an experiment
corresponding to a question ex the result will be "yes," the question ex is
certain or the question ex is true.

D7 (preorder relation between f3 and y). If the question y is true whenever
the question f3 is true, the question f3 is stronger than the question y, which
is symbolized by f3 < y. The relation D7 is transitive.

X <bi' Vi E J <;? x < A bi
J
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Axiom C (existence of a compatible complement). For each proposition b
there exists at least one compatible complement b'.

The well-known concepts of a lattice and of lattice generated by a family
of propositions are then used for the following axiom:

Axiom P. If b < c are propositions from 2 and if b' is the compatible
complement for b, and c' is the compatible complement for c, then the
sublattice generated by (b, b', c, c') is a distributive lattice.

Axiom P entails: (1) the uniqueness of the compatible complement b'
for any b E 2; (2) orthocomplementation:

Vb E 2: (b')' = b, b v b' = I, b A b' = 0

V(b, c) E 2 X 2: b < c => b' > c'

and (3) weak modularity:

V(b, c) E 2' X 2', if b < c, then c A (c' v b) = b, b v (b' A c) = C

D17 (atoms). If p is such that 0 < x <p => x = 0 or x = p, then p is
called an atom.

Axiom A (atomicity, covering law): If bE 2, b =1=0, then there exists
an atom p: p < b. If p is an atom and if p A b = 0, then p v b covers b (in
the sense of a well-known definition, Ref. 7, p. 848).

Finally, two further definitions are relevant for the subsequent study:

Dl1 (orthogonal propositions): bE 2 is orthogonal to C E 2 and is
symbolized by b ..l c if b < c'.

Dl8 (propositional system). A complete lattice satisfying axioms C, P,
and A is a propositional system.

3. THE STUDY

The formalism briefly reproduced above is built on two interconnected
levels, the level of questions and the level of propositions. For this reason
we call it a questions-propositions system and symbolize it by the notation /
qp-s. Now, on the level of propositions,3 the logicomathematical structure
which emerges is that of a complete, orthocomplemented, weakly modular,
and atomic lattice (D1s)' Such a logicomathematical structure is known to be
isomorphic to one introduced by the Hilbert space formulation of quantum
mechanics and consequently it is known to be a formally self-consistent
structure. (2.3) But the global structure introduced by the two levels, of

a In the sense of (D. +DJ.

propositions and of questions, interconnected according to the definitions
Du-D16 is a new structure, which involves more basic assertions than the
usual lattice-theoretic formulations, namely those concerning relations
between questions and propositions. As far as we know, such a formal
structure has not yet been studied. In particular, it is not at all obvious a
priori that this structure is formally self-consistent. Indeed, the definition D4
of a product of questions and the rule for the "negation" of such a product
(fl] O:i)- = flJ(O:-) are unusual and seem to contradict de Morgan's law.

In what follows we shall first show that the qp-s is self-consistent in the
sense of the abstract theory of models, i.e., we shall show that it does admit
a model. (8)

However, we shall furthermore show that the Axiom C associated with
the definition D4 for a product of questions, with the definition Da of the
opposite question and with the consequent rule RI for the opposite of a
product of questions, raises a very grave formal problem, which is the
source of a semantic barrier in the way of the interpretability of the qp-s as a
physical theory.

3.1. Existence of a Model for the qp-s Formalism

According to the theory of models a formal system is proved to be
self-consistent if a model is produced for it, i.e., if a "realization" of the
language of this formal system is produced which validates all the axioms
of the system. By definition, a realization of a formal system is a set!/' and
certain relations' and operations in !/' yielding an interpretation of the
functional symbols and of the predicates from the studied formal system.

In the present case one has to define a set Q with a preorder relation
and the following~two operations:

(1) 0: E Q -- (X- E Q.

(2) {(Xi}] E P(Q) -+ flJ O:i E Q.

P(Q) being the power set of Q, and such that:

(A) «(X-)- = (x.

(B) (fl] (X;)- = Ili(X-).

(C) The preorder relation defines, by passage to equivalence classes,
a complete, atomic lattice Y satisfying the covering law.

(D) Y is provided with an orthocomplementation a -+ af such that

Va E 2', 3(X E a: (X- E af

This makes 2 a weakly modular lattice.
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and
3(X E a: (X- E af => ex TT a- E a A af = 0

(exTT ex-)- = (X- TT (X E af A a = 0 =1= I = Of QED

This situation can be illustrated by the following "noncom mutative"
diagram:

Proof By construction: Given any a E 2, let us form the proposition
a A af = O. It is possible to define constructively the compatible complement
Of of 0: According to the requirement D15 , the unique complement for 0 is I.

So I also has to be the compatible complement required for 0 by Axiom C.
Now,

(X E a
3ex: ! !

ex- rt a'
VaE2,

3aE2,

Interpretative lllustration. Consider a particle in a one-dimensional
space, say represented by the real line. Let ex, f3 be two questions defined as
follows: 0: is defined by an apparatus capable of verifying whether or not the
position of the particle belongs to the set (0, 1), the answer "yes" corre­
sponding to the case that the particle is found in (0, 1); analogously, f3 is an
apparatus capable of verifying if the position of the particle belongs to the

Theorem 9;. For any a E 2 distinct from the trivial proposition, the
compatible complement a' is different from the class of the negations of all
the questions of which a is the equivalence class.

Proof Given any a E 2, a =1=I, we choose any question b orthogonal

to a but distinct from af• We shall show by construction that there exists a
question (X E a such that (X- E b. Since each question belongs to one and only
one proposition, this will prove that (X- rt af, which will establish 9; .

By definition D16 and Axiom C there exist inside the qp-s questions
«(X, (3) such that (XE a, (X- E af, f3 E b, f3- E b'.

Consider now the question y = (X TT f3-. By definition D17 we have a < b',
hence b < a'. One then has y = (X TT f3- E a A b' = a, whereas y- E «(X TT f3-)- =
(X- TT f3 E af A b = b =1= a'.

Thus yEa and y- E b =1=af• This proves 9;.
The content of theorem 9; can be graphically expressed as follows:

(X E a
3(X E a: ! !

ex- rt af

The above example introduces the highly particular proposition 0
(moreover, for this proposition it has been possible to construct a compatible
complement). But we shall now prove a theorem concerning any proposition
from qp-s:

Theorem ~. The qp-s does admit a model.

Proof Given in Appendix, because of its length.
The conclusion imposed by Theorem ~ is far from being trivial, for

two distinct reasons which might be related. In the first place, as soon as one
realizes fully the unusual character of the definition for a product question,
the existence of at least a certain sort of self-consistency for the qp-s appears
as surprising -much more than as natural. In the second place, the model
constructed in the proof possesses certain striking peculiarities: While the
propositions are represented by closed subspaces of a Hilbert space, a product
of questions is represented by a sum (of sets of subspaces). This suggests
that the formal self-consistency proved with the help of a such a drastic
distortion might somehow lead to difficulties in also mimicking the semantic
structure associated to the quantum mechanical formalism.

Now, we assert the following:

I1 (Xi E 1\ ai
J J

« There exists in fact a critical attempt by Mielnik"" but which is viciated by the same
false assumption.

• We find no better name for this first assertion, which is much less important than the two
subsequent ones; it is neither a lemma nor a consequence; as to the word "proposition,"
it would be confusing in the present context.

Small Theorem [/':7.5 Inside the qp-s there exists at least one proposi­
tion such that its compatible complement is different from the class of all
the negations of all the questions of which that proposition is the equivalence
class.

3.2. Critique

As far as we know, Axiom C has not yet been seriously criticized. We be­

lieve that this acceptance of Axiom C stems from a false assumption. Namely,
several authors (for example, Greechie and Gudder, (9) MiSra, (10) and, in an
early version of qp-s, Jauch and Piron(ll) consider that the compatible

complement a' of a proposition of a qp-s simply consists of the c!?:ss {(X-}
of all the negations (X- of the questions (X E a.4 If this were true, Axiom C
would be so trivially satisfied that the necessity of its statement as an axiom
would be questionable. But in fact the mentioned assumption is not true,
and what is questionable is the very "existence" of a compatible complement
a' for any a E 2. This will be shown now by a succession of three increasingly
far-reaching theorems.

(E) For any family {ai}i E J of elements of 2 and for any choice
exi E ai , we have



.~
758 Hadjisavvas, Thieffine, and Mugur-Schachter Study of Piron's System of Questions and Propositions 759

so that
C 1\ d = a' v b'

Using the notation V for the disjunction in the lattice !l', we can write

(a 1\ b)' = a' v b'

(5)

(4)

(3)

(2)

(1)d>b'd>a',c > b',c > a',

a' =b'

d=b'

(a 1\ c) v a' = 0 v a' = a'

Relations (1), (4), and (5) entail

al\c=O

(x 7T (X- E a 1\ c

c = a'

(x 7T (X- E 0

(a 1\ c) v a' = (a va') 1\ (c va') = 11\ C = C

By a similar inference, we can find

and relations (2) and (3) entail

Thus

Because (x 7T (X- is never "true," we have

so that

«x 7T f3)- = (X- 7T f3- E C /\ d

but also

Now, Axiom P together with the inequality c > a' entails that the lattice
generated by (a, a', c, c') is distributive. Consequently,

Thus

Proof By reduction to absurdity: Let us suppose the contrary, namely
that there exists at least one pair of questions (x and f3, (x E a and f3 E b,
such that «x 7T f3)- E (a 1\ b)'. Let c and d be the propositions containing
(X- and f3-, respectively: (X- E C, d- Ed. Then we find

f

I

set (2,3). Note that, by definition Da, (X- and f3- correspond respectively
to the same apparatus, but for these questions the answers "yes" and "no"
have been inverted. Let a, b be the propositions to which (x, f3 belong. We
note that in this illustration, apart from their syntactic definitions, the
propositions a, b are furthermore endowed with a semantic content: a, for
instance, is here the proposition "the position of the particle belongs to the
space interval represented by (0, 1)," which can be verified or falsified by use
of the apparatus (x. By construction we have (XE a, (X- Eo', f3 E b, f3- E b'.
Furthermore, b < a'. Thus, by definition D17 , b and (X are orthogonal.

If we now define the question ')I = (X 7T f3-, then, as shown in the proof
of Theorem 3";; , one has 'YE (x, ')1- rf=a'. Thus-syntactically-we are already
in the presence of the surprising fact that the negation of a given question
lies somewhere outside the complement of the proposition to which that
question belongs. But let us now get down to semantics. Suppose that we
measure'Y E (X and that we find the answer "yes": In general, no conclusion
whatever can be drawn therefrom concerning the truth of the proposition a,
namely "the position belongs to (0, 1)," despite the fact that ')I E a: Indeed,
by definition D4 , in order to perform a measurement of ')I, we have to choose
one of the two questions (x, f3-. If by chance we choose to measure f3-, then
an answer "yes" for ')I means, by definitions Da and D4 , that the answer to
f3 is "no," that is, that the particle has been found in (~ - (2, 3». However,
exclusively from this information, obviously it cannot be decided whether
a is true or not. This brings into evidence the fact that the formal characteristic

of the qp-s expressed by Theorem 3";; in general entails certain specific
awkward semantic consequences in an interpretation of qp-s.

Thus, contrary to a widely held opinion, the compatible complement
a' -quite generally--cannot be formed as the class of all the negations of
the questions from a qp-s. This, however, does not yet lead to doubts about
the existence of a'. Indeed, so far there is still the possibility that for each
given a E !l' some method for constructing a nonvoid a' is specifiable, even
if a' does not contain all the negations (x' of the (X E a. But we shall now prove
a theorem which seems to deny this possibility also.

Let us consider any pair of distinct propositions a E !l', b E !l', a -i= b,
a = {(Xi}iE/, b = {f3j};E}. Furthermore, let us consider all the product
questions (X 7T f3, (X E a, f3 E b. By definition D12 the equivalen~e class of (X 7T f3

defines the proposition a 1\ b. Now we assert that the compatible complement
(a 1\ b)' of a 1\ b contains none of the negations «x 7T f3)- of the questions
«x 7T f3) by help of which-exclusively-the proposition a 1\ b can be defined:

Theorem .:J~. Given in !f the proposition a 1\ b, (a, b) E !l'2, a '1'= b,
defined as the equivalence class of any question (x 7T f3, (x E a, f3 E b, one has
«x 7T f3)- rf=(a 1\ b)', V«X 7T f3).

so that
a=b

contrary to the initial assumption that a and b are nonidentical propositions.
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Thus the hypothesis that there exists at least one pair of questions 0:E a, {3E b
such that (0:7T(3)- E (a Ab)' is false. This proves Theorem 9; .

The content of Theorem 9; can be expressed graphically as follows:

Illustrative Challenge. Consider a microsystem S of nonzero mass.
Consider also two apparatus d(Q) and d(P) utilizable for measuring-in
the sense of the quantum mechanical theory of measurement-respectively
the position observable Q of S and the momentum observable P of S, which,
as is known, are noncommuting: [Q, P] =1=O. Now, inside the qp-s, for
any system and any apparatus able to measure something on this system,
there exist questions corresponding to these possible measurements on this
system. So in particular for the microsystem S and the apparatus d(Q)
there exist inside qp-s certain questions 0:, while for S and the apparatus
d(P) there exist inside qp-s certain questions {3.Furthermore, inside the
qp-s, each question q defines (as its equivalence class) a certain propositionp.
Let then a E .P and bE .P be, respectively, two propositions defined by two
chosen questions 0: and {3. Each pair of propositions from .P defines a
corresponding product proposition belonging to .P, so in particular one
can write a A b E.P. Finally, Axiom C asserts the existence inside 2' of the
compatible complement p' of any proposition p E 2', hence also, in particular,
according to Axiom-C, (a A b)' E 2' does exist. But according to Theorem 9;
none of the negations (O:i7T(3j)' of the questions O:i7T{3j, O:iE a, {3jE b does
belong to (a A b)'. Our challenge then is the following one:

V(a, b) E.P X .P, a =1=b

VO:7T{3EaAb

0:7T{3 E aAb! !
(0: 7T (3)- ¢:(a A b)'

semantic meaning defined inside quantum mechanics when quantum
mechanics is researched as an interpretation of the qp-s.

But in case of failure we are once more in the presence of a formal
system subject to precisely the same sort of criticism which has already been
given of the former Jauch-Piron formal system: Again the propositions of
the type a Ab are the source of problem, this time via Axiom C, which
asserts the "existence" of a compatible complement for any proposition
from 2', hence also when, in particular, this proposition is of the form a 1\ b,
a and b being equivalence classes of questions consisting respectively of two
measurements of two noncommuting quantum mechanical observables.
Indeed, what sort of a meaning could be assigned to such a compatible
complement, in a case in which no method of syntactic construction can be
specified for at least one question from the class of which this asserted
complement consists, and in which no semantic definition can be assigned
to this class in coherence with the semantics associated with the quantum
mechanical formalism inside the quantum theory, of which the qp-s is
claimed to be an adequate generator by interpretation? And if no sort of
meaning whatever can be assigned to (a A b)' E 2', if it is merely an inter­
mediary formal entity somehow "useful" inside the qp-s, then how could it be
accepted that such an entity be introduced by one of the fundamental axioms
of a formal system built with the aim of yielding by interpretation the physical
theory denominated quantum mechanics?

In this sense Theorem 9; raises a strong doubt concerning both the
"existence"' asserted by Axiom C and the relevance of the qp-s as a generator
of quantum mechanics by interpretation.

4. CONCLUSION

1. Try to specify syntactically inside the qp-s at least one question
belonging to (a 1\ b)', i.e., try to produce by the qp-s definitions, rules,
theorems, and axioms an algorithm constructing a question of some
structure-necessarily different from (0:7T (3)-, 0:E a, {3E b-which certainly
does belong to (a Ab)' by syntactic necessity. (Note that neither a A b nor
(a A b)' possesses a defined correspondent inside quantum mechanics.)

2. Specify the apparatus corresponding to thi~ question [note that
such an apparatus would have to be different from both d(Q) and o<d(P),

while inside quantum mechanics only these apparatus are considered in
connection with the "position" and the "momentum" of S].

In case of success it will have been shown that, notwithstanding
Theorem 9;, Axiom C is endowed inside the qp-s with some specifiable
~'syntactic meaning," even if this syntactic meaning does not generate a

We have shown that the questions-propositions system qp-s proposed
by Piron is self-consistent in the sense of the theory of models. But we have
also shown by a sequence of three increasingly wide-reaching theorems that
the relevance of this formal system as a generator of quantum mechanics by
interpretation is strongly questionable: One of the axioms of this system
asserts the "existence" of a type of element belonging to the system for
which in certain cases neither a syntactic method of construction is specified
inside the system nor-a fortiori-a possible semantic definition is indicated
in consistency with the semantic structure associated with the quantum
mechanical formalism inside the quantum theory. In such circumstances it
seems very difficult indeed to retain the contention that the qp-s is a formal
structure which is able to "yield" quantum mechanics by interpretation.



This structure, on the contrary, seems to be fundamentally inadequate for
this aim.

More generally, the group of theorems proved in this work brings
strikingly into evidence the fact, probably generally known but certainly
often neglected, that a formal system, if it is built with the aim of yielding
by interpretation a given mathematical description of a domain of reality,
has to satisfy constraints that are in general different from a mere isomorphism
with the mathematical structure used in this description. What these
constraints are, is an important nonelucidated question.
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(a) Condition (A) is an immediate consequence of (A4).

(b) Condition (B) can be proved easily;:

( r (M) ( , ) (A6) ( , )I)/Xi = X:XEI)/Xi = X:XEY/Xi

, (M) (AS)
= U {x : x E /Xi} = U /Xi = I1 a:i

J J J

763

APPENDIX

(c) To prove condition (C), we proceed as follows. First, as is easily
verified, the relation < is a reflexive and transitive one, thus a preorder
relation: consequently the relation defined on Q by

Theorem 91. The questions-propositions system has a model. y ~ S ¢> def y < Sand 3 < y (A6)

Proof Let H be a separable Hilbert space and L be the set of all

closed subspaces of H. As is well known (Section 2), L is a complete, atomic,
orthocomplemented and weakly modular lattice satisfying the covering law.
We shall denote in L the order relation by -<, the orthocomplementation by
a prime, and the conjunction by A. Let Q be the power set of L,

Q = defP(L) (AI)

is an equivalence relation. Hence it defines the set 2 of equivalent classes of
elements of Q and an order relation on 2:

Va, b E 2: a C b ¢> def a: < (:3, Vti E a, V{:3E b (A7)

]n addition, relations (A2), (A3), and (A6) show that y ~ 3 iff A(y) = A(3).
]n other terms A(y) = A(3) iff y and S belong to the same class a. Hence
we can write

For any y E Q we define A(y) E L by the relation Va E 2: A(a) = def A(a:), ti E a (A8)

A(y) = def A x
,"Ey

furthermore, we can define the preorder relation on Q by

y < 3 ¢> def A(y) -< A(3) l

(A2)

(A3)

Thus the A defined is an application 2 -+ L. This application is injective:

.-':A~ = A(b) (~) A(a:) = A({:3), Va: E a, (:3 E b
> -,);.,; ~

=> ti~{:3=>a=b

Furthermore, if x E L, then {x} E Q and we have, by relation (A2),

We define the two other applications a: -+ ti- and {IXi};"J -+ IlJ a:; by the
formulas

so that A is also a surjective application. Thus finally relation (A7) implies
that

]f a is the equivalence class containing {x}, then A(a) = A({x}) = x. Hence

Vx E L, 3a E 2: A(a) = x
/X- = def{x': x E a:}

I1 /Xi = defU eli
J J

(A4)

(A5)

A({x}) = x

I
IoIJl

where U is simply the set-theoretic union. Definitions (AI) and (A3)-(A5)
form a realization of the theory. We shall now prove that this realization
is a model, i.e., that conditions (A) -+ (E) are satisfied (Section 3.1).

A(a) -< A(b) ¢> A(a:) -< A({:3),Va: E a, {:3 E b ¢> a: < {:3 ¢> a C b

6 A number above a symbol indicates the relation in consequence of which this symbol
can be written.
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First we note that, for any a E 2, one can verify the following relations:

i.e., the application A is a bijection, preserving the order relation between
the ordered sets Land 2 (an isomorphism). Since L is a complete atomic
lattice satisfying the covering law, 2 also will possess that structure. ]n
addition, we can define an orthocomp]ement on 2 by the relation

It can be easily verified that A also has properties of orthocomplementation
and weak modularity: condition (C) is thus satisfied.

(d) Concerning condition (D), we only have to prove that

Va E 2, 3(XE a: (X- E a'

Va E 2: a' = def A-l[(A(a»)']

A(a') (~) A[A-l(A(a)'] = [A(a)]'
(A2)

A(a) E L => {A(a)} E Q => A({A(a)}) = A(a) => {A (a)} E a

{A(a)}- (~) {(A (a»'} (~O) {A(a')}

Then, since (All) holds for any element a, one has

{A (a')} E af

and relations (AI2) and (A13) imply

{A(a)}- E af

(A9)

(A 10)

(All)

(A 12)

(AI3)

(AI4)
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Finally, relations (A I I) and (AI4) show that, for any a E 2there exists at least
one (XE Q, namely (X= {A(a)}, such that (X- E a': condition (D) is satisfied.

(e) As for condition (E), given any family {ai}iEJ of elements of 2
and any (XiE ai, we find, since A is an isomorphism, that

and

A ( 1\ a;) =A A (ai)J , J
(A15)

.) .)
(A5)

A (n (Xi = A (U 0:; = A x = A /\ x = AA(t<i) = I A(ai) (AI6). J J. xeUJQ:i J XECli J J

From equalities (AI5) and (AI6), we infer

A (1\ a;) = A (n(Xi) => n exi E 1\ aiJ .. J, J

which suffices to show that condition (E) also is satisfied, and achieves the
proof of the theorem. Printed by the St. Catherine Press Ltd., Tempelhof 37, Bruges, Belgium




