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FOREWORD

The articles collected in this volume were written for a Colloquium on
Fifty Years of Quantum Mechanics which was held at the University
Louis Pasteur of Strasbourg on May 24, 1974, in commemoration of
the original work by De Broglie in 1924,

It is our hope that this volume will convey to the reader the idea
that quantum mechanics, besides being a fundamental tool for scien-
tific workers today, is also a source of a number of questions and
thoughts about the interpretation of the foundation of quantum
mechanics itself. This gives rise to problems of a philosophical and
logical character and has repercussions on other domains such as the
theory of gravitation.

Besides the papers presented at the Colloquium, an article has been
included by D. Bohm and B. Hiley. This compensates, perhaps, for
the article of S. Kochen, whose manuscript unfortunately did not
reach us in time for inclusion in this volume. A few months after this
Colloquium we learned of the death of Professor Jauch, who had takena
lively and crucial part in its discussions. We have been extremely
saddened by the news of his death, and would like to express our long
standing indebtedness to him as a physicist.

We are grateful to Professor B. d’Espagnat who kindly helped us in
organizing the Colloquium meetings and to Professor G. Ourisson
who, as President of the Louis Pasteur University, gave us en-
couragement and support to our enterprise. We would further like to
express our thanks to all those who have contributed to the work
involved in the Colloquium and the publication of this book, and
especially to Dr J. Simmons who agreed to check the English version
of several contributions.

J. LeiTE LoPEs
M. PaTy

M.MUGUR-SCHACHTER

THE QUANTUM MECHANICAL ONE-SYSTEM
FORMALISM, JOINT PROBABILITIES
AND LOCALITY

“Il ne faut pas que 'esprit
s'arréte avec les yeux, car la vue
de I'esprit a bien plus d’étendue
que la vue du corps’.

M#lebranche

R. Magritte

1. INTRODUCTION

Professor Wigner[1] has proved a theorem which is believed to
establish the impossibility of associating with any state vector a joint
probability of the position and momentum variables. In this work we
study this important theorem and we show that in fact it does not rule
out the joint probability concept, but that instead it leads to a locality
problem inside the one-system formalism of quantum mechanics,
similar in certain respects to the problem formulated by Bell[2] inside
the two-systems formalism of quantum mechanics.

The analyses which we carry out draw attention to the super-
position states with non-connected support, raising doubt concerning
the truth of certain quantum mechanical predictions for such states.

1. Leite Lopes and M. Paty (eds.), Quantum Mechanics, a Half Century Later, 107-146. All Rights Reserved
Copyright @ 1977 by D. Reidel Publishing Company, Dordrecht-Holland



108 M. MUGUR-SCHACHTER
2. STUDY OF WIGNER’S THEOREM ON JOINT PROBABILITIES

2.1. Wigner’s Demonstration

We start by reproducing Wigner’s demonstration. This will be done in
detail, in order to facilitate any eventual comparison.

Given a one-system wave function ¢(q) (in one-dimensional no-
tation), Wigner studies a joint function P(g,p) of the positional
variable ¢ and the momentum variable p, on which he imposes the
following conditions:

(a) that it be a ‘hermitian form of ¥(q)'. i.e.
(1 P(q,p) =, M(q, p)¥),

where M is a self-adjoint operator depending on p and g, and

(b) that P(q, p), if integrated over p, give the proper probabilities
for the values of g, as

(2a) f P(q,p)dp = |¥(q),

and, if integrated over g, give the proper probabilities for the mo-
mentum, as:

2
(2b) J. P(q,p)dq = (21Tﬁ)"l I ¥(q) e ™" dq| .

The condition_{b} admits the somewhat milder substitute that
P{g,p) should give the proper expectation value for all operators
which are sums of a function of p and a function of g, as

@ f f P (@ pXF()+ 2@ dq dp = (# (f(? é)w(q}) o)

A third ‘very natural’ condition on P(q,p) would be that it is
non-negative for all values of g and p:

3) P(q,p)=0.

But Wigner demonstrates that the conditions (a) and (b) are incom-
patible with (3). This is realized by showing that the assumption that
a P(q,p) satisfying all three conditions (a), (b) and (3) can be
defined for every s, leads to a contradiction.

The contradiction is obtained for wave functions ¢(g) of a par-
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ticular form, namely for ¢ which are linear combinations (a, + by)
of any two fixed functions such that ¢, vanishes for all for which ¢,
is non-null, and vice versa. Wigner starts with the following lemmas:

LEMMA 1. If ¢(g) vanishes in an interval I, and if g(q) is zero
outside this interval and nowhere negative therein, one has for the P
corresponding to the ¥(q) above:

4) j P(q,p)g(q)dq =0,

for all p (except for a set of measure zero).

This follows from (2) with f = 0: the integral of (4) with .respcct top
vanishes because the right side of (2) vanishes

(4a) JJ P(q,p)g(q)dp dg = (¥, g(@)¥) =0.

However, the integrand with respect to p, that is the left side of
(4), is non-negative for the g postulated, as long as (3) holds for P.
It follows then that the integrand with respect to p must vanish
except for a set of p of measure zero, q.e.d.

Furthermore, (4) is valid for every function g(q) which satisfies
the conditions of Lemma 1. It can then be concluded in a similar way
that:

LEMMA 2. If ¢(q) vanishes in an interval I, the corresponding
P (q, p) vanishes for all values of g in that interval (except for a set of
measure zero).

Wigner’s demonstration then continues as follows:

Let us consider two functions ¢,(q) and ¥-(q) which vanish outside
of two nonoverlapping intervals I, and I, respectively. Because of
(1), the distribution function Pa(q, p) which corresponds to ¥ =

ay, + by, will have the form:
(5) Pab(q-p)=!a1zpl+ a*bPu*'ab*le"’leP:‘

Setting b =0, we note that P, is the distribution function for ¢,
and similarly, setting a =0, P, is the distribution function for ¢,. Let
us consider (5) for the g outside the interval I,. Since (according to
Lemma 2) P, vanishes almost everywhere for such g, the distribution
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function (5) cannot be positive for all a and b unless both Py, and
P., vanish if g is outside I, (except for a set of measure zero in g and
p). A similar conclusion can be drawn when q is outside I,. Hence.
we have instead of (5), almost everywhere,

(6) P.(q,p)=lal’P\(q, p)+|b[’Pq. p).

This means that the distribution function P,, is almost everywhere
independent of the complex phase of a/b. But this is impossible if P,
is to give the proper momentum distribution for = ay, + by, ie. is
to satisfy (2b). Indeed, let us denote the Fourier transforms of yn(q)
and Ys(q) by @,(p) and ®,(p). Equation (2b) then reads

M |anP.(q,p)dq +iblsz2{q,p)dq

= |aP|@,(p)I’ + [bF|Px(p)F + 2Re ab* P,(p)P1(p)-
Since this must be valid for all @ and b, it requires identically in p:
(7a) D\(p) - P3(p)=0.

But this is impossible, since @,(p) and @,(p), being Fourier trans-
forms of functions restricted to finite intervals, are analytic functions
(in fact, entire functions) of their arguments, and cannot vanish over
any finite interval.

Professor Wigner formulates the result of his demonstration in the
following terms (p. 28): :

“no non-negative distribution function can fulfil both postulates (a)
and (b)".

2.2. Bearing of Wigner's Theorem

Preliminaries
There seems to be a tendency to interpret Wigner’s theorem as the
expression of an absolute impossibility of a joint probability of the
position and momentum associable to the quantum mechanical state
vectors. Such a tendency betrays the real conceptual situation.
Quite generally a demonstrated absolute impossibility is im-
possible: the framework inside which an impossibility is demon-
strated ineluctably restricts its bearing. Some of these restrictions
cannot be suppressed without disintegrating the studied problem, but
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some of them might not be essential to the definition of the problem.
or even might vitiate it. Obviously only an explicit examination of the
logical relativities of a proposition to the framework of its proof can
show which restrictions can or must be dropped.

Furthermore the bearing of a theorem is relative also to the inner
structure of the proof (via one counter example, or directly for the
whole class considered).

We shall now examine the various logical relativities of Wigner's
theorem, which define its bearing.

Framework of the proof

The framework consists of the postulates: (a) (hermitian forms
defined by (1)), (b) (the two marginal conditions (2) for any ), and
the non-negativity condition (3). The assumptions of non-negativity
and of hermiticity are entailed by the significance of a probability
required for the distribution P(q, p), hence they cannot be dropped
without disintegrating the very problem chosen for examination,
which consists precisely in the possibility of a probability distribution
P(q, p). Thus eventual unnecessary restrictions can be implied only in
Definition (1) and/or in Postulate (b).

DEFINITION (1). Definition (1) is not the most general one
conceivable. The distribution operator M is required self-adjoint and
dependent exclusively on g and p. The second requirement entails for
M independence on ¢, and this entails P(q, p) as a sesquilinear form
of ¢. Now the functional P(q, p) is researched such as to accept the
significance of a probability. Then the concept of a probability
requires by its definition the reality of P(q, p) so that P(q, p) must be
indeed a hermitian form of ¥: the condition that M be self-adjoint
cannot be dropped. But the independence of M on ¢ is not imposed
via the probabilistic significance desired for P{q, p), so that in the
examined context it is an arbitrary a priori restriction. We shall now
show that: '

PROI?QSITION. In absence of the arbitrary restriction to a
sesquilinear form for P(q,p), Wigner's demonstration cannot be
realized.

Pr??f. Instead of (1) we start out with the most .general
definition a priori conceivable for a joint probability distribution of g
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and p, namely

(y P(q.p)= (. M(q. p. 1Y),

where the distribution operator M(q, p. ¢) is self-adjoint and depends
on ¢, p and . All the other assumptions introduced by Wigner are
left unchanged. We introduce the notations: i, is a state vector
ay, + by, where the supports of ¢, and ¢, are disjoint; P[,, P}, P} are
respectively the distributions obtained for . ¢, and ¢, by use of
Definition (1); P}, and P}, are respectively the analogs of P, and
P,; from (5) obtained by use of (1Y. With these notations the
expression of the joint distribution for i, yielded by Definition (1)
is :

5y Pl,(q,p) = |al (¥, M(q, p, ¥p)¥,) + a*bP |, + ab* P},
+ |b|2(!1b23 A’f(q, p, t."fab)d‘z)-

2

In Wigner's expression (5), the factor of |a|® in the first term and the
factor of |b|? in the last term identify respectively with the distribution
P; yielded for ¢, by Definition (1) and with the distribution P,
yielded for ¢» by Definition (1). The sequel of Wigner’s proof is
directly founded on this fact and on Lemma 2, as it can be verified by
inspection. But this fact is not reproduced in Expression (5. Now
this is so precisely because of the dependence on ¢ of the distribution
operator M from (1), which introduces i, in the argument of M,
instead of, respectively, ¢, in the factor |a|* and ¢, in the factor of |b|™.
For this reason-even though Lemma 2 continues to hold in the
assumed context - Wigner's proof can no more be reproduced with
the nonsesquilinear definition (1)', q.e.d.

If not Wigner’s proof, then Wigner's conclusion might be general-
izable - by some other proof —to any definition of a joint probability
subject to both marginal conditions (2). But in fact this cannot be
done either, as a well-known example suffices to show: the ‘trivial’ or
‘correlation-free’ distribution |¢(q)P|@(p)|* (where @ is the Fourier
transform of ¢) is a non-negative hermitian and non-sesquilinear form
of ¢ defined for any ¢ and which fulfils both marginal conditions
(2). Therefore it can be concluded that Wigner's theorem has no
bearing on a non-void class of joint probabilities a priori possible. On
mathematical grounds (considerations of continuity) it seems pro-
bable that this class is not reduced to the trivial distribution alone. It
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cannot be decided whether this class contains or not ‘interesting’
members. as long as the structure of all the conditions to be imposed
upon a joint probability (time evolution. mean conditions, cor-
respondence rules between functions and operators. etc. . ..) has not
vet been thoroughly defined and studied as an organic whole. The
attempts made up to now in this direction are not numerous and - as
far as we know - none of them is both complete and guided by an
explicit and coherent system of physical criteria for the choice of the
mathematical conditions.

Postulate (b). Let us now examine the two marginal conditions
(2). In a first approach we admit the truth of the quantum mechani-
cal predictions expressed by the second members of (2). for any .
In a second approach we question this truth for the particular states
described by vectors .

First stage: The truth of the predictions from the second members
of Relation (2) being a priori posed for any #, the conditions of
consistency with quantum mechanics expressed by use of the first
members of (2) are not the most general ones conceivable. They are
in fact very restrictive, requiring the observability of the integrated
distributions P(q) =[ P(q,p)dp, P(p)=f P(q,p)dq (even though
not necessarily of the values g, p also). The joint probabilities P(q, p)
subjected to less restrictive conditions of consistency escape Wig-
ner's theorem. '

Second stage: An exhaustive examination of the logical relativities
of Wigner’s theorem obliges us to raise finally also the question of the
truth of the second members of both conditions (2) for the par-
ticular state vectors i, with non-connected support. Indeed Wigner’s
theorem being based on a counter-example proved for the mentioned
states, the theorem would remain without foundation if for these
particular states the right-hand members from (2) were not both
true. This question of truth, even though brought in merely by logical
considerations, seems less irrelevant from the physicist’s point of
view when it is realized that probably the momentum distribution in a
state ¢, with non-connected support has never been measured, so
that the ‘existence’ of an interference term is so far a purely formal
fact; not even the assertion of measurability of the momentum
‘observable’ seems to have an obvious operational meaning, neither for
such states in particular, nor in general (more detailed remarks can be
found on pp. 132, 134, 135).
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Inner structure of the proof

Wigner’s theorem is demonstrated by producing a counterexample to
‘the initial assumptions, which holds for the state vectors of the
particular type ¥, = ayn + by, where the supports of ¢, and ¢, are
disjoint. Even though via this counterexample a general impossibility
(for any ) is established indeed. this impossibility, nevertheless, has
no bearing on the sub-class of state vectors of a type different from
¥as, Which contains the major part of the state vectors coming usually
into consideration: the theorem leaves open the question whether yes
or not for the state vectors ¢ #,, a non-negative form (1) can fulfil
both marginal conditions (2). In certain contexts this question might
appear as non-trivial from the physicist’s point of view (if, for
instance, the quantum mechanical predictions for the momentum in
states ¢, were false),

Conclusion

The preceding analysis shows that Wigner’s proof does not exclude
the possibility of any non-negative joint distribution function of the
position and momentum variables associated with the quantum
mechanical state vectors.

Notwithstanding this conclusion we believe that Wigner’s proof has
an outstanding heuristic interest. Indeed, once an analyzed knowledge
has been obtained concerning its structure and its bearing, this proof
suggests developments which disclose questions of a fundamental
conceptual importance. The remainder of this article is devoted to
these developments.

3. SUPERPOSITION STATES WITH NON-CONNECTED SUPPORT
AND NON-LOCALITY OF THE ONE-SYSTEM FORMALISM OF
QUANTUM MECHANICS

3.1. The Problem

The counterexample on which Wigner's theorem is based possesses
characteristics which suggest the possibility of a problem of locality
implicit in the one-system formalism of quantum mechanics. Indeed.
the state vector directly concerned by the proof is a superposition
Vector Y, = ay, + bys, with non-connected support. The distributions
of the position and of the momentum predicted by quantum me-
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chimies for such a state are respectively
(%) [t = al Tk + 6Pl

and
(9 [P (I = [al'|@(p)P + b Ds(p )] + 2Re ab* ® (p)D%(p).

where @, @y, @, arc the Fourier transforms of, respectively, u'fﬂb,_ 1/
i Suppose now a joint probability P(q, p) which fulfils the marginal
canditions () for any «, hence in particular also for i, (by the
analysis of Wigner's proof we know that such s joint probability, if it
exists, cannot have a distribution operator independent of ¢). If the
factor Py,(p. q) of conditional probability of p given q is explicitly
wiitten, the marginal condition for g applied to ,,, ¥, and ¥, leads
(with obvious notations) to

(1 (. ) = Pap(q)Pab.pia(q, p)
= al’P1(q@)Pab,pia(@, P) + |6’ P(@) Pu.pia(q, P).

When we now examine (10) we are struck by the following aspect:
Far ench given pair of values g, pc one of the two terms of (10) is
nill, since either ¢, € 1, and then q, # I, or vice versa. Nevertheless
when the conditional factor Pa pia(q, p) is tied to a value of the
position variable belonging to I we have in general

(1 Pon pg (i € Iy, pi) # Py yalgy € 14, po),

aiid when Py (g, p) is tied to a value of g belonging to I; we have in
peneral

(1) Powd a0 C 1, pe) # Pa (g € I, po).

This v 40 because (9) and the marginal condition for p applied to
i iy andd o, entaal in general for P.(p)=f Pu(q, p)dq that

(1) Palp)# Pp)+ PAp).

(Wigner's argument: the product D(p)P5(p) from (9) is not null
ientically in p for any ¢, ¢.) Thus when P piglg, p) is tied t_o
Iy nlone, ats value is not determined only by ¢, with support ‘Il, it
depends on the whole superposition i, = ays, + by, and this is so
fnotwithstanding the fact that the support I, of ¢, is separated from I,
by an arbitrary distance (the symmetric proposition holds when
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P piglq. p)is tied to I- alone). This is a mathematical non-locality of the
functional dependence on i, of the conditional probability Py, g, p).
emerging in the confrontation between the supposed joint probability
P, (q. p) and the topological characteristics of the support of ¢,. What
Wigner’s proof really shows is that a sesquilinear definition of P(q.p)
cannot engender this mathematical non-locality. while the marginal
conditions (2) do demand it for superposition states Y With a
non-connected support.

Now the mathematical non-locality specified above expresses ex-
clusively spatial aspects of the confrontation between the concept of
a joint probability and the non-connectedness of the support of .
Therefore —as it stands -it has no established relation with some
physical problem of ‘locality’ in the sense of the theory of relativity,
where time plays an essential role. Furthermore this mathematical
non-locality might vanish like a non-essential aspect when conditions
of consistency less restrictive than (2) are required for P(q,p) on
the basis of some more analyzed physical criteria of relevance of a
joint probability. The aim of this section is to show that in fact the
mathematical non-locality perceived in the example from Wigner’'s
proof is an essential aspect of any relevant joint probability P(q, p)
(and of any other probability distribution derived from a relevant
P(q,p)) and that this formal non-locality does entail a problem of
physical non-locality inside the one-system formalism of quantum
mechanics.

The pursuit of this aim will draw attention on specificities of
the superposition states which distinguish these states fundamentally
from the mathematical decompositions permitted by the expansion
postulate. Along this path we shall be led to the notion that the
superposition principle —even though it materializes a mathematical
possibility and even though it permitted to describe so accurately the
wave-like aspects manifested by certain position distributions of
microsystems — might nevertheless introduce inadequate predictions,
either false or unverifiable, for the dynamical quantities which depend
on the momentum and for the spin.

3.2. Criterion for the Choice of Conditions of Consistency

Before researching whether the mathematical non-locality discerned
in the example from Wigner's proof entails or not a problem of
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physical non-locality, we shall first specify conditions of consiste.n.c:y
with quantum mechanics such as they determine a joint probabillt}r'
concept P(q., p) at the same time minimally restricted and ‘relevant’.
This of course requires criteria of relevance. We believe that the
efficient criterion is that of relevance to the ‘reduction problem’,
which is the core of the multiform and now more than fifty years old
controversy on the significance of the quantum mechanical for-
malism. This problem is well-known: the quantum mechanical for-
malism yields only a statistical prediction concerning the outcome of
one individual act of measurement, while this act brings forth a
unique well-defined result thereby ‘reducing’ the predicted spectrum
to a certain certitude. The main purpose of those who desire a hidden
variables substitute to quantum mechanics is to obtain a ‘dete.r-
ministic’ solution for the reduction problem. Such a solution is
researched along the following lines. It is postulated that the stu’die‘d
system possesses, independently of observation, certain intrinsic
properties statistically describable by a virtual distribution of values of
an appropriate group of hidden parameters (hidden to quantum me-
chanics but not necessarily also to observation). For one given system,
at any given time, only one of all the possible groups of values for this
group of hidden parameters is conceived to be realized. Eac_h measur-
able ‘quantity w of a system’ is conceived as related with a cor-
responding function h,, of the hidden parameters. An individual act of
measurement of w is conceived as a process of interaction between
the system and a w-measurement device, which act induces into a
deterministic evolution the unique but unknown value h; ,, possessed by
h, at the initial moment of this act of measurement. The unique
observed value w; brought forth by the act of measurement can thus be
considered to emerge as an observable result of the system-device
interaction, deterministically connected with the unique preexisting
initial value h;, via the interaction evolution. It has to be stressed
however that the existence of a deterministic connection between each
observed w; with one value h;,, does not entail a one-to-one relation
between the values h,, and the values w;; the assumption of such a
one-to-one relation is obviously not essential for a deterministic solution
of the reduction problem. Therefore it would be unnecessarily restric-
tive.

Since the main objective of the hidden variables attempts is to
develop a deterministic solution to the reduction problem, we shall



118 M. MUGUR-SCHACHTER

discard in what follows the conditions of consistency which engender

joint probabilities a priori inadequate for the research of a deterministic
solution to the reduction problem.

3.3. Inadequacy of both Marginal Conditions (2)

The marginal conditions [ P(q,p)dp = P(q) =|¢(q)f and [ P(q, p)dq
= P(p)=Q2wh)"'|f ¥(q) e *¥* dq[' require the observability of both
statistical distributions P(q) and P(p). This does not entail that the

individual values of the variables ¢ and p have to be also observable, nor.

does it fix the physical significance to be assigned to the symbols q, p.

If the possible significances of g, p are considered, it is immediately
obvious that the significance of ‘pure observables’ (i.e. values of some
observable entities for which the denominations of ‘position’ and
‘momentum’ are decreed, but which are defined exclusively by the
specification of some experimental circumstances involving the
system, and where these entities emerge) cannot be relevant to the
reduction problem: the criterion of relevance to this problem requires
a definition of q, p independent of observation. Discarding then the
pure-observable significance and postulating for q,p a significance
independent of observation, we shall now show that, whatever hypo-
theses are chosen concerning the observability of the individual
values g, p, the marginal conditions (2) engender a joint probability
P(q, p) which is either unnecessarily restricted or self-contradictory,

The beable significance for q,p. Any property possessed by a
system independently of observation has been called by Bell a beable
property. We like this denomination and we adopt it. We shall now
specify in detail the two important particular concepts, of a beable
position and of a beable momentum.

Beable position. By definition this concept consists of the as-
sumption of beable properties of the system which possess charac-
teristics describable with the aid of the classical quantity position, i.e.
which in any referential are, at any given time, non-negligible only in-
side a finite and relatively small spatial domain. Such an assumption
is equivalent to a minimal model of the object named ‘system’.
However - by its minimality — this model does by no means entail the
naive atomistic, multitudinist hypothesis concerning the structure of
the microreality; the finiteness and the smallness of the domain inside
which the conceived beable position properties are ‘confined’, are
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only relative to some specified (and modifiable) c_iegree _of hap—
proximation chosen for the description of these pmp_ert.les. whlle.t e;r{
‘existence’ is defined only with respect to some specified but e.rbltra.r}l-c
range of spatial dimensions characterizing the. chosen scale o
(imagined) observation. The concept of the object called sy§tem
itself. to which a beable position is assigned. emerges only relatively
{0 some choices of such approximations and of such a scale. Thus the
notion that a beable position is possessed by what is named systen;
has nothing absolute in it. In particular .it leaves open the pro'f.aiem;oh
separability of the systems and of locality of the phenomena in whic
ry are involved. ‘

”“fre-ah:'c momentum. It is not impossible to conceive a beaplﬁ
position which does not perform a continuqt{s dynamlcs,.but wh:cd
merely consists of a discontinuous juxtaposition of_ an uninterrupte
siccession of locations possessed by some properties of t.h‘e system,
in the sense specified above. But this sort of a beal?le position woutld
reproduce the ‘essentially probabilistic’ features which a determinis ;c
solution for the reduction problem attempts to rem(:n_!e. Such a beab]cei
significance for g in the argument of a joint probgb:llty P(q, p) wou
therefore yield a concept irrelevant to the reducflon problem, so that
we discard it. If then a beable position which dogs perfgrm a
continuous dynamics is assumed, ipso facto some cl:eﬁmte contlpyous
time variation of this beable position is assumed. This - by definition -
in what we call a beable momentum. )

I'he beable individual kinematic relation: Thus the., a§sumpt10n of a
continuously moving beable position of a syste_m is interdependent
with (he ;mx'umplion of a beable momentum of this ‘system. These t\fvo
united assumptions are equivalent to the assumption of Fhe descrip-
live relevance of a position variable g and a corresponding momen-

tuim variable p, tied to one another by the individual kinematic relation
(in one dimensional writing)
. dg
(1) p=K ar
where K is a factor of proportionality playing the role’ of an iner.tial
mass. This individual relation is a non-trivial ‘and tmportanE im-
plication of the concept of 2 continuously moving beable position,

heciuse it entails statistical correlations a?nd these can be founFl ttu be
¢ither compatible or incompatible with a given condition of consistency
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with quantum mechanics envisaged for a joint probability distribution of
beable g, p.

Rejection of the requirement of both marginal conditions (2) for
beable g, p: We consider two complementary hypotheses concerning
the observability of beable values g, p. assumed to exist for a system:
either not both these values are observable. or they are both ob-
servable. Either of these hypotheses leads to the rejection of the
requirement of both marginal conditions (2). Indeed., we consider first

an inobservable beable g or p. Then it can be rather trivially pointed out
that:

PROPOSITION 1. The marginal conditions (2) entail an un-
necessarily restricted statistical distribution of the values of an inob-
servable beable g or p.

Proof. Suppose that the value of the momentum beable is not
observable for some given state of the studied system S. Let us then
redenote this value p’ in order to distinguish it from the observed
value produced by an act of momentum measurement performed on
S. Even though the individual values p’ are not observable. the
marginal condition (2b) requires that the statistical distribution
P(p") shall coincide with the observable quantum mechanical dis-
tribution (27h)7'|f Y(q) e ™4 dg[* of the values p (i.e. to each
unknown value p' corresponds one observed value p which arises
statistically the same number of times). This, however. is an un-
necessary restriction on the relation permitted between values
p' and values p: For ensuring at the same time consistency with
quantum mechanics and relevance to the reduction problem it suffices
to require that the observed values p alone have the quantum
mechanical distribution and that, furthermore, each one observed value
p be connected by the measurement interaction evolution, with one
preexisting value p’ (included in a hidden distribution P(p’) in general
different from the observed one).

An analogous argument holds for g.

We consider now observable beables g, p. We shall show that

THEOREM 1. A joint probability distribution P(q, p) of observable
beables g, p. cannot fulfil both marginal conditions (2) for any state
vector.

Proof. We produce an example: Consider the state vector
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1 1
Y(q) = :/-5 dp, (@) + —= dp.ld).

V2
where ¢, (q) and ¢,,(q) are eigendifferentials of the quantum me-
: - : " - . "
chanical observable momentum (vector), corresponding respectively

io the eigenvalues p, and p, the directions of which make an ungl_e
« # 0, the norms being equal and non-null (jp\| = pa) = 0. :'Slm:e this
slate requires a two-dimensional description we refer it to two
orthogonal axes ox, oz, the axis ox being chosen pural!el ‘to ?he
biscctrix of e« The quantum mechanical position distribution
lx, )] = (@) is then uniform along ox and periodic along 0z:
furthermore, this quantum mechanical distribution 1s stationary. “e
consider now a joint probability distribution P(q, p) associated wu.h
the chosen ¢ and fulfilling both marginal conditions (2); q and p in
the argument of P(q, p) are assumed to be obscrvablt? beables. Then
the beable character of q.p entails that at each given time each
instantaneous individual value of the momentum variable possesses a
kinematic Definition (14) p = K(dq/dt) according to which‘ it is
pencrated by the time variation of a corresponding joint q. Via this
kinematic definition and the hypothesis of observability of the
individual p the marginal condition (2b) for the momentum entails
consequences for the time variations of the individual values of the
position variable, and these in their turn entail consequences for the
statistical position distribution P(q) = [ P(q. p) dp. Now for the chosen
stale vector the consequences on Piq) of (14) and (2b) are'not
compatible with the stationarity of P(q) required by the hypothe§1§ of
observability of g and by the marginal condition (2a) for the position.
Indeed (14) and (2b) entail non-null z-components for the time
variations of the (observable) q
_ dg. _p._
(15) T =|p.| # 0.

This entails that, if at some initial time t,. (1.2a) is realized,
throughout the future t > t, of this time the location with respect to oz
of the maxima and minima of P(q) keep reversing by a continuous
process, with a time-periodicity

Kdq. Ki

(16 dt = =——
’ P 2]
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where { is the distance at I, between two successive maxima of P(q).

This example suffices for establishing Theorem 1. It shows that a
joint probability P(q, p) of observable beable values g, p which fulfils
both marginal conditions (2) for any ¢, is a self-contradictory concept.

Since a joint probability P(g, p) of beable q.p which fulfils both
marginal conditions (2) is either unnecessarily restricted or self-
contradictory and since, for a priori relevance to the reduction
problem, the beable hypothesis for q,p has to be conserved, we
conclude that at least one of the two marginal conditions (2) has to be
dropped.

3.5. Minimally Restricted Relevant Conditions of Consistency

We admit by hypothesis that the object denominated one micro-
system (S) does possess a continuously moving beable position and the
corresponding beable momentum. Statistically this leads to the as-
sumption, for any state vector ¢, of a corresponding joint probability
of beable position and momentum variables. We shall now charac-
terize this distribution so as to keep constantly faithful to the
minimality of the model of a microsystem introduced by the mere
assumption of a continuously moving beable position, while ensuring
nevertheless a priori relevance to the reduction problem. Then, for
the sake of minimality, we start out with a joint probability P,(q’, p')
where neither the position beable q' nor the momentum beable p’ is
asserted to be observable.

Condition for the momentum

We examine first the momentum distribution f Pylq’.pdq" = P,(p")
because it seems less queer to admit that it is not observable, i.e. that
in general it is different from the quantum mechanical momentum
distribution: (f 2,(q,p")dq = P,(p") # [@(p)F (@ is the Fourier
transform of ). For relevance to the reduction problem we have to
admit that an individual act of momentum measurement relates
the one preexisting beable momentum p’ of the respective system,
to the observed value p. This leaves (in general) an active role to the
momentum measurement device D(p), in agreement with Bohr's
ideas: if A is a parameter characterizing the state of D(p), the
observed value p is a function P(p', 4. A) of p'. ¢ and A,
the form of this function (unknown) being fixed once ¢ and a device
D(p) are given. Now, for any physically realizable § and inasmuch as
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the quantum mechanical prediction |®(p)|* is true for ¢, we have to
assume that statistically p(p’, ¢, A) is obtained the number of times
(normalized) |@(p)|*. This number can also be written Pu(p")RppiA)
where Rp(A) designates the statistical distributic.m .01? A over the
ensemble of the states of D(p) realized for the individual acts of
measurement which yield |@(p)|*, and where p', A are taken the same
as in the argument of p(p’, ¥, A); indeed P,(p') and Rp,(A) are
independent densities, since in every individual act of.measurement
interaction p' preexists to the interaction, by hyp?themsi The neces-
sity to label somehow the products P,p(p"}RDlp,()t? in relation with the
obscrved values p, leads then to the mean condition

(17), “-J-p(p', Y, A)Py(q', P’ to)Rp(A) dg’ dp’ dA

= fj p(p:'s ‘vb? ‘\}Pw(prs IO)RDIp}(A) dP’ d)‘

foa
= J pl®(p, to)f dp =<w(q, 10)1?%"'&(% ru)>-

We have written explicitly the constant time t, elapsed since the st;fxte
i has been prepared for each individual S, when the corresponding
individual act of measurement interaction between D(p) and S be-
gins: thereby we emphasize that the numerical eqpali[y (1‘7)1 doe§ not
depend on the time evolution of the measurement mteractzons.. neither
on their functional form nor on their duration; it depends exclusw.ely on
the connection between their result (second member) and circum-
stances which precede them (first member, t,).

But, beyond the numerical aspects, it is important to understand
clearly the conceptual content of the integrand from the first member of
(17),: while the values of the functional p(p’, ¢, A) are the ob?erved
values p from [ p|é(p, to)l*dp, the functional forn'f .of. p(p’, ¥, A)
represents the hypothetical - individual and deterministic — process
which leads from one beable value p’ possessed by the supposed
momentum beable of the system, at the time ¢, when the meas‘urement
interaction began, to the observed value p, defined at another time, by a
coordinate attached to a macroscopic part or aspect (‘pointer’) of D{(p).
The presence of the parameter A in the argument of p(p’, r,{;,.A) strf:sses
the assumption that this individual process depends —besides p’ and
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s — also on the state of D(p), throughout the time interval taken by the
measurement interaction. The definition of this state of D(p)introduces
a macroscopic potential (constant or null. for p) which is different in
general from the macroscopic potentials having commanded the
Schrédinger evolution of  from the moment from which ¢ has been
prepared until f, when the act of measurement began. Thus the exact
meaning hypothetically assigned to p(p’, ¢, A) is this: it represents one
individual member of a virtual statistical ensemble of p-measurement
evolutions, globally corresponding to the Schrodinger evolution of the
state vector of the ‘system + D(p)’. during the p-measurement in-
teraction. We finally note that, for the sake of maximal generality, we
conceive that the functional form of p(p’, ¢, A) might depend upon the
particular D(p) device utilized. Two different devices Di(p) and Ds(p)
can be conceived to introduce in general two different functional forms
p"(p’, ¢, A) and p®(p’, ¢ A) and two different distributions Rp,(A;)
and Rp,;)(A2). But then a certain correspondence has to be also assumed
between p'", Rp,, and between p'?, Rp,,), such that statistically, in a
given (g, ty) prepared for each microsystem S, both Dy(p) and Da(p)
shall create any given observed value p, with the same relative
frequency |P(p, to)>.

Condition for the position
We require for the position the same type of consistency condition as

for the momentum, in order to conserve the minimality of the

demanded restrictions:
(17) J‘”‘ q(q’, ¥ A)Py(q’, p', 10)Rpg(A) dg' dp’ dA

= jj alq', . \)Py(q’. t0)Rpg(A)dp' dA

= (¥(q, to)lq(q, to)) = f l(q. to)’q dgq

(obvious notations). All the comments concerning (17), are transposable
for (17),. We make now an important remark concerning (17)y:

In the first place, this mean condition for the position, in con-
tradistinction to the marginal condition (2a), leaves open the pos-
sibility that the beable position g’ of one microsystem S“, lies
outside the support of ¢ However shocking it might seem, this
possibility cannot be excluded since the purely predictional formalism
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of quantum mechanics introduces no assertion whatever concerning
the way in which the only observationally described object S
‘exists’ independently of observation. However (2a) subsists inside
(17), as a particular possibility. In consequence of Theorem 1, one
at least of the two marginal conditions (2a) and (2b) has to be
dropped, but not necessarily both. Since we have dropped the mar-
ginal condition for the momentum, we remain free for the moment to
assume that the marginal condition for the position is always true. But
it will appear that this apparently so natural assumption has a heavy
price, if all the quantum mechanical predictions are true.

The other mean conditions (macroscopic dynamical

quantities, quantum mechanical dynamical operators, beable
dyvnamical quantities)

For dynamical quantities more complex than g and p. most of the mean
conditions posed so far in connection with joint probability attempts —
and then criticized — have a structure which does not resist a closer
analysis. Given a macroscopic classical dynamical quantity f.(q, p). the
corresponding beable dynamical quantity of a microsystem S is
usually conceived in a way which violates the minimality of the model of
a microsystem introduced by the mere hypothesis of a continuously
moving beable position: the beable which corresponds to f.(q,p) is
brutally identified with f..(g, p) and thereby the naive atomistic model,
made obsolete by de Broglie more than fifty years ago, is implicitly
reintroduced. Moreover, the fact that a measurement interaction in
general modifies the beable characteristics of a microsystem, therefrom
yielding an observed value, is not taken into account. Such unanalyzed
steps lead to mean condition of the type

: f o
IJ fm(a, P)Py(q, p)dq dp = <¢Efm.QM(q’ }5}) lﬁ)'

(fm om is the quantum mechanical operator for f,,), and then these are
found unsatisfactory, which indeed they are. Before-going over to
locality analyses we shall express these criticisms more detailedly. This
will enable us to specify what mean conditions, for any quantity, can be
imposed upon a joint probability both minimally restricted and relevant.

We begin by recalling a well-known fact concerning the time
evolution conceivable for a joint probability of beable g'.p’. Since
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(17), and (17), are required for P,(q'.p’) at any time. P, has to
perform a time evolution compatible with the Schrodinger evolution
of the corresponding . This evolution admits a newtonian represen-
tation in consequence of the kinematic definition p'= K(dg'/dt) as-
sumed for each p’. Indeed - by definition — the time evolution of P, is
newtonian if it is describable by an equation of the form

(18) 0P(q’.p") _p’ 9PId".p")  0Pu(q". P")
at K aq? ap’

]

where the symbols ¢’ and p’ are pairwise connected precisely by the
kinematic relation p’'= K(dq'/dt). while the time variation of p’ is
equated, by application of the fundamental newtonian postulate, to a
convenient ‘total force’ F, classical or not,

dp’

(this force can be conservative, or dissipative, or a sum of a con-
servative term and of a dissipative term; only in the first case it is
derivable from a potential function, and then (18) acquires a hamil-
tonian form). Now, it is well established that, given the Schroédinger
evolution of ¢ determined by some macroscopic potential V,, (q), it is
in general not possible to find a newtonian evolution (18) for an
attempted joint probability P, if F in (19) is required a priori
identical with the macroscopic force F,, =—grad V,(q): proofs of
this impossibility are contained implicitly, but rather obviously, in the
text-book studies of the WKB approximation as well as in Feynman'’s
path integral approach(3] or in de Broglie’'s and Bohm's hidden
variable attempts. Thus F in (18) has to be conceived as an
unknown non-macroscopic force which cannot be posed, but which
has to be determined consistently with the Schrédinger evolution of
¢, as a functional of V,(q) via ¥(V,(q)). This functional would
probably yield the most specific descriptive element of a non-naive
model of a microsystem.' If, on the contrary, F in (18) is decreed to
be identical to F,, =—grad V, (gq), any hope for a joint probability
Py(q',p’) performing a time evolution consistent with ¢ —for any
¥ — is thereby banished.

On the basis of this remark it will now be easy to understand that
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PROPOSITION 2. Given a macroscopic classical dynamical quantity
fuld.p). a corresponding beable classical dvnamical quantity does not
necessarily exist; if it does exist. then it is in general different from
the corresponding f,,(g. p). so that it cannot be found by reversing the
correspondence rule which led from f, (g, p) to the respective quan-
tum mechanical operator fou(q. (A/i)(3/3q)).

Proof. Again we produce an example. Consider the macroscopic
dynamical quantity total energy f.(q.p)= H,(q.p)=p’2m + V,(q).
Consider also one individual microsystem S''. What can be said
concerning a beable total energy of $'’? With our previous assump-
tions S" possesses.a beable position and a corresponding beable
momentum p’= K(dg’'/dt). One can then form for S a kinetic
energy p”/K (where K is not identical to the mass m of S§**, a priori).
But in order to preserve for a joint probability Py(q’, p’) attempted
for $", the possibility of a time evolution compatible with that of i,
the force F =dp’/dt which-by newtonian postulate —is equated to
dp’/dt, has to be in general different from the macroscopic force
F.(q)=—grad V_(q), F'(g") # F(q). If moreover F'(q’) is not con-
servative, then S simply does not possess a beable hamiltonian,
notwithstanding the fact that the time evolution of ¢ is expressed bv
a hamiltonian (operational) formalism[4]. If on the contrary F'(q")
also does derive from a potential, this potential V'(g") # V,(q) is in
general different from V,(q); then S§* does possess a beable hamil-
tonian H, = p?/2K + V'(q") but this is different from the macroscopic
hamiltonian H,, = p%/2m + V(gq) to which corresponds the hamiltonian
cvolution operator for ¢: Hgy = —(h2m)(8%/8q%) + V(q). Replacement
in Hgy of (R/i)(8/3q) by p, and of the multiplicative operator V(q) by
the function V(q), yields back H,, but not H,(# H,).

This example suffices for showing that mean conditions of the form

ff fm(a, PYPy(q, p)dq dp = (Y|fmom(q, (B i)(/3g))).

are not significant. (In particular such a mean condition for the potential
energy itself

ff Vn(@)Py(q.p)dq dp = (¢|Va(q@)¥),
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is the very definition of a naive, atomistic postulate on the structure
of the microreality). P, and « cannot be purely algorismically treated
as if they were both fit for relevantly calculating means of any and
same functions. P, can yield relevant means for beable values only
while ¢ is relevant for calculating means of observed values only.
Park and Margenau have explicitly contested — on logical grounds —
the relevance of mean conditions written with the macroscopic func-
tions f.(q, p)[5]; Proposition 2 gives a more physical reason of this
irrelevance. But obviously there exists a much more radical objection:
given a quantum mechanical operator f,om corresponding to the
macroscopic dynamical quantity f,, even if the respective beable
quantity both does exist and is distinguished from f,,, not its mean value
is relevant to the reduction problem, but the mean engendered by it via
the measurement interactions, which depend also on the measurement
device. Bohr's views on measurement were very profound, each act of
measurement modifies preexisting characteristics of the system, bring-
ing out from it observed values of other, only operationally defined
‘quantities of the system’.

Then all that can be required of a joint probability P,(q’, p') of beable
q', p' is to have an analytic expression such as to be compatible with

mean conditions of the type (17), and (17),, for any quantum mechanical
dynamical observable w, at any time, i.e.

(17) LU w(q, p, ¥, A\)Py(q', p', to)Rpi)(A) dg’ dp’ dA

R ) .
= (Iff(Q. to)| foron (QTEE) ¥(aq, fa)) N J w|C*(w, t)f* dw,

where all the notations have obvious meanings by analogy with (17),. All
the comments concerning (17), can be transposed to (17), which includes
now (17), and (17),. We can rewrite (17) in a form more specifically
connected with the dynamical observable w: Given one S’ we denote
globally by a unique parameter w' all the beable characteristics of §'*
which contribute, with ¢ and A, to the creation of the observed value w
when one act of w-measurement is performed on S"'. These charac-
teristics can be conceived as defined at ¢’ since g’ designates the beable
element of S to which a beable dynamics is assigned. Then statistically
the joint distribution P,(q'.p’, t,) defines a corresponding joint dis-
tribution IT,(w’', q', t;). Rewriting of w(q’, p’, ¢, A) in function of w'
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yields a function of a new functional form w(w', ¢, A) but lhf; values of
which continue to be the observed values w, and for which all the
considerations made for the particular case of pip'. . A)from (17), are
valid. So (17) becomes

W J‘J'J ww' g M)IT(a' W' to)Rpi)(A) dq’ dw' dA
= (Y(q. tolf o (@, to)) = J w|C¥(w, t0)12 A,

The critical remarks which led to condition (17)" show that all t'he,
theorems of impossibility (like that of von Neumann concerning
simultaneous measurements of quantities with non-commuting quan-
tum mechanical operators ([16], pp. 255_230)‘_0F that of 1§9§hen an(ci1
Specker(7], as well as all the investigations on joint prob_abxhtles b{ase
on correspondence rules with the quantum mccharqcai Operators'
(Moyal[8], Bass[9]. Cohen[10])) must be carefully reconsidered. Indged.
If the quantum mechanical operators of two quantum mechamc;al
dynamical observables w, and w, do not com_mute. this expresses — by
definition — the fact that the quantum mechanical measprement proces-
ses yielding the quantum mechanical operatic_)na_] c%eﬁmtlons for w, and
w.. cannot be realized simultaneously in one individual act_of measure- .
m:,:nt. Hence, when one examines the question of the_ “slmul%aneous
measurability of two observables w, and w, associated with two
non-commuting quantum mechanical operators’, ip:so facto a non-
quantum-mechanical operational definition is now envisaged for at least
one of these two quantities, namely a definition such that, now, tht? two
measurement processes conceived shall ‘commute’ (shall be simul-
taneously realizable in one individual act of qlgasurt?ment). In other
terms, this problem cannot concern the same initial pair of obscrvablc.s
w,, wy; it can only concern another pair, where at iejcxst one membef is
changed. This does not at all mean that the problem is absurd_. Nothing
hinders the conception that one given beable property w' asmgn‘ed toa
system can be connected with observable facts via several dlfferenl:
operational definitions. But there is no reason lh.en. to ex.pcc.t fO}' suc
different operational definitions the same slatlstl_cal .dlSlI‘lbLlllOIn of
observed results; different observed statistical distnbul}on; ha_ve to be
expected for them. in general. All these f)bsel:val?le .dlstribgtkogs arr;;
equally acceptable for ‘describing’ the unique intrinsic distribution o
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values supposed for the beable quantity w’ assigned to the studied
system. under the sole condition that each one of the observable
distributions be related in some definite - even though specific — way
with this unique intrinsic distribution. These considerations entail that
when the question of simultaneous measurability is examined. one at
least of the two w(w', . A) functionals intervening, describes an
individual measurement evolution that is somehow not compatible with
the quantum mechanical operator for w. There is then no reason
whatever to require the equality (17) when such a w(w’, ¢, A) acts (as
Park and Margenau([5] did, as well as von Neumann[6]). Furthermore,
there is no reason whatever either for subjecting the functional forms
w(w', ¢, A) from (17)' to structural correspondence rules with the
quantum mechanical operators associated to the w-quantities, nor for
requiring for these functionals an algebra identical to that of the
quantum mechanical operators. The w(w’. . A) from (17) represent
processes, and these, moreover, are posed to be individual: this is the
essential feature of any attempt of a ‘causal’ solution to the reduction
problem. Whereas any quantum mechanical w-operator is defined in
direct formal connection with the function f,,,, describing the classical
macroscopic w-quantity; this operator, moreover, is in a one-to-one
relation with a whole family of eigenvectors ®j.. to each one of which a
joint probability attempt assigns already a statistical significance. as it

can be seen for instance by writing (17) for a ;. and by comparing the
contents of the two members:

J-J’f W(W", ‘;&v A)H¢Jw{q,, W’, In)RD{,,.,()\)dq' dw' da
- <¢fw(w\ rU) ! fQM.w‘bjw(qa "0)) e Wj

(w; is the eigenvalue corresponding to ¢;,. of the quantum mechanical
operator fou,,). It simply is not physics to impose upon the w(w’, ¢, A) a
priori formal constraints. The relevant constraints have to be deduced
by means of very analyzed physical criteria brought forth by an
improved insight in the joint probability problem. We believe that such
an insight cannot be obtained as long as only surface probabilistic
relations, connecting probability measures alone, are stated explicitly,
while the corresponding relations between the events concerned by
these measures are left more or less in the dark. All the various
probability spaces which intervene — quantum mechanical probability

THE QUANTUM MECHANICAL ONE-SYSTEM FORMALISM 131

spaces and joint probability spaces — have to be stu@tgd 1r} the:ir f{nnrf}:z
and with their interplay at all the levels (*conditions d‘e mr;isme
‘experiment’, elementary events brOUght forth. field on thebeg‘gnn aure
on the field). in order to acquire a precise and complitc percepti

deep structure of the joint probability problem[12].

16. Generalization to Any Relevant Hidden Distribution

The ‘dynamical’ observables associated t.o S corres?orlld aub;;u::;zlr
operators fom(q, i/i(3/dq)) —to the classical dynam:gg_ q - t}{é
which are all defined as functions f(g.p] of thc.poslt:on' e
momentum. Therefore the concept of a joint pr_obabtllty Py(q ..gamrai‘
beable position and a beable momentum }!grlable see‘r}ns a ki iind
concept for expressing the consistency condition ( lT‘), tc?_‘ »:: r;clq i
the quantum mechanical *dy namical’ obscrvqb!es associate resocniation
joint probability concept, however,_cannot yuﬂd a direct rep cemanion
of the ‘field-like’ beable properties tentanv‘ely‘ conceiva e
microsystem; it reflects such properu?s oniy. mdlrectly‘, \u? o
classical forces necessary (in general) in the ume-evolul:m_{l_ a o [.hc
one wants to preserve the possibility of some compal.lb.l ity et
Schradinger evolution of ¢ (pp. 125-.l28).fTile;iic:-Les;?;g;o;nlz::istency
: P,(q',p") is not appropriate lor € s
Zgﬁzfg;n :(oic:r:ling the quantum mechanical observa.bles ofoietnc;
which no classical function f(g, p) corresponds (charge, spu};zgl: g
on a given direction). Indeed, for suchan u.bserv'ablc it whquh e
restrictive to pose that the beable proper!tles w' of deﬁ ic by
observed values w (via the process_w(w IT/A )\’)} are de _r:le ::1 ?n, o
has been assumed for the dynamical ’quantllies. consl erf . hiddc,;
Therefore we generalize (17) and (_l‘?) by m.a}(lng usef 0,) st
distribution P(w’) instead of tl;e j;:unt pr?pbil;ll?" tig;{n(fg ‘apge‘nemlized
i wiw'. @, A) instead of w(q',p'. ¢, A), ‘
Ll:(?;;lr?iziiat()i; w¢},1ich designates globally any sort of beal;le p;og;a;t::lz
assigned to S and conceived to lead to the observed value
interaction process described by w(p', ¥, A):

(17)" J'J’ W(p,', ‘j’- A}P.{.-{.u',s tD)RD(w:I{‘\) d.ﬂ-' da =

= (Y(q, to)l wom (4. to)) = J’ we(w, o) dw
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(wou in the second member is the quantum mechanical operator of the
observable w, connected or not with a classical function fta. p). Thus
(17)" englobes now (17) and (17Y: we have finally obtained a condition
applying to any hidden distribution - a joint probability. or some other

distribution — which is both minimally restricted and still relevant to the
reduction problem.

3.7. Methodological Attitude Concerning the Consistency
Condition (17)"

We want to stress a methodological attitude to which we attach a
fundamental importance: we assign to the condition (17)" a symmetric
role with respect to quantum mechanics and with respect to a hidden
variable attempt, we do not subordinate inconditionally the hidden
variable attempts to quantum mechanics.
The conditions of consistency attempted so far have all presup-
posed the exceptionless validity of the quantum mechanical predic-
tions, at least in the domain of atomic dimensions and newtonian
energies. However the fact that a hamiltonian operator can be written
does not ensure the physical realizability of its potential term, neither
that, a fortiori, of the corresponding Schrédinger time evolution-law.
If now a physically realizable potential and the corresponding evolu-
tion-law are considered, the mathematically possible y-solutions do
not all correspond to physically realizable boundary conditions. And
if a physically realizable ¥ is considered. very parad
quantum mechanical ‘observables' of the system do not all possess a
unanimously admitted and physically realizable operational definition.
so that the corresponding prediction is not always verifiable (the most
striking example of this sort concerns the fundamental ‘observable’
momentum: in a state ¢ which is not an eigenstate of the momentum,
according to the orthodox theory of measurement a rigorous
measurement of the momentum for ¥ (1) yields the observed results at
t' such that (t'=t)~o (time of flight method)). Finally if one con-
siders a physically realizable ¢ and an observable for which an
admitted operational definition does exist and the results of its ap-
plication are observable. then the corresponding quantum mechanical
prediction might never have been verified.’ But a priori restrictions
corresponding to unrealizable, or 1o non-verifiable, or to non-verified
features of the quantum mechanical description, are likely to introduce

oxically, the
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3.8. One-System Non-Locality
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space, outside the periods of observation. of the objects described by
this theory, the possibility of a preparation of the type specified above
might contain some implications as to where this object can “exist’
outside the periods of observation, according to a joint probability
theory fulfilling conditions of consistency with quantum mechanics.

(2) As we have already pointed out, the quantum mechanical
momentum observable has a peculiar operational definition. namely the
time-of-flight method. According to this definition the measurement
begins at a moment ¢, by the suppression of all external fields. if they
existed, while the interaction with a material registering device D(p)
(which yields. directly, a position value) is relevant only if it occurs at
another time t, such that t — ty = At(p) ~ . The complete measurement
interaction consists here of the passage of the infinite period At(p) + the
final registering interaction with D(p). Now, the infinite value thus
required for At(p) introduces ambiguities at the level of a joint
probability theory: in the first place, it rules out a rigorous verifiability of
the quantum mechanical prediction for the momentum spectra.
Moreover, not even an approximate verification of this prediction seems
ever to have been made effectively for the various types of preparable
states i (in particular for the superposition states 1, = ay, + by, with
non-connected support, or with connected support (interference)).
Therefore, faithful to the agnostic attitude we choose, we reserve our
opinion as to the circumstances in which the consistency condition (17),
concerning the momentum has to be required. In the second place, in the
case of a free Schrodinger evolution of ¢, the quantum mechanical
operational definition of the momentum observable permits a degenerate
relation between the observable p-spectrum asserted by quantum
mechanics and the instantaneous structure of the hypothetic beable
distribution of a hidden momentum Pu(p') = f P,(q’,p')dq'. cor-
responding to the joint probability measure from (17);. Indeed the
quantum mechanical p-spectrum is an invariant of a free Schrodinger
evolution. Then the whole family of different instantaneous structures
taken on by Pu(q'.p'.ty) from the left member of (17), when time
translations change the f, considered. correspond to one same quantum
mechanical p-spectrum in the right member of (17),, if ¢ has a free
Schrédinger evolution. However, as soon as the beable properties
assigned to the object S are different from those of a material point
(which seems rather unavoidable. as the remarks on pp. 125-128 show),
the beable momentum distribution P,(p') = [ P,(q',p' = K dq'/dt)dq’
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can - in general — change during a free evolution of ¢, in consequence of
the kinematic definition p = K(dq'/dt) of the beable momentum. Once
more an illustration is vielded by the superposition states. namely those
which, like u’;(q.tl={I,l’\/i)d)p(q)+(_lf\/5!<b,.l(q] from the proof of
Theorem 1 (pp. 120-122) take on successively, during their Schrodinger
evolution, a connected support first, and then a non-connected support
(or vice versa)[13]. The preceding remarks apply as well to any function
of the momentum alone. But consider now quantities w not depending
on the momentum alone (kinetic momentum, projections of the kinetic
momentum, total energy). The quantum mechanical operational defini-
tions of such quantities consist of procedures where the time at which
the interaction itself between one $™ and a material device D(w) begins,
coincides with the time t, from (17)" at which what is called *measure-
ment’ as a whole begins. Moreover, the duration Af(w) required in
principle for such a measurement is not infinite. The preceding remarks
concerning the quantities depending on the momentum alone do not
apply to these other quantities. We shall now show that:

THEOREM 2. If itis assumed that the beable properties assigned at a
time ¢ to the object denominated one system S'* cannot lie outside the
support in the physical space of the quantum mechanical state vector
W(t) associated to S'', then even the minimally restricted joint
probability concept from (17)" is unable to ensure a local deterministic
solution to the reduction problem, for any state vector and any
dynamical observable.

This theorem will be proved by giving an example. Our choices for an
example are the following ones:

For the reasons given in the preliminary remarks (b) we consider a
quantity w of which the quantum mechanical operational definition
involves a finite measurement interaction time

(20) At(w) <=,

Furthermore, at some initial time f, we consider the three state
vectors i, s, ¥ = a, + by, such that the supports in the physical
space, I, and I,, of —respectively — ¢, and ¢», are disjoint. The distance
d,, separating the two nearest points of [, and I, is subject to a condition,
namely: we denote by 4t,, the time-interval necessary for preparing for
S the state described by ¢, out of the state described by i,,, by the
method mentioned in remark (a) (i.e., 4t,, is the time-interval. finite,



136 M. MUGUR-SCHACHTER

taken by an.obtu.rator or a filter for suppressing on I, the characteristics
0{1 S described in i, by the term biy,). The moments f; <t <t are
chosen such that A, = to— ti. At{w) = — to. We den ‘
i : ote At,-+ ) =
At and we require i
2n d» > cAt,

where ¢ designates the velocity of light.

With these choices we can now develo
the pro
shall first show that p the proof of Theorem 2. We

LEMMA. The product wil,, intervening in the integrand from the first

member of the condition (17)" written f
or Y, has a math i
non-local dependence on . & P emgtically

Proof. The condition (17)" written for i 1 i
Wi Yoy W), Yn. yields (with obvious

22) f” W(w', aps MITan(q@', W', t)Rpee(A) dq’ dw’ dA
= (Y (@ to)lfouan (s 1) = laf’ f w|C(w)]* dw
+ibFJ'wiC”‘(w)Fdw+a*bJ' w(CP(w)*CH(w) dw

+ab* J w(CPwN*CM(w) dw,
@ [[[ W DI W R da” ' dr
= (Y(q. to)|fomti(as L)) = f wC(w)* dw,

4) f f f w(w', dig, MIT(a's W', 1) Roo(A) dg’ dw' d
= (¥Aq, to)|fomnmtn(a, 1)) = f w|CP(w)* dw,

Let us admit tentativel i iti
i y the hypothesis conditionally contai i
formulation of Theorem 2, namely ’ fned in the

(h) the beable properties assigned at a time ¢ to what is named one
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system S* cannot lie outside the support of ¥(q. 1) in the physical
space.

Consider now the product wil,, from the left member of (22). The
hypothesis (h) entails that this product is null outside the support

= J, U I, of ,(q. ty). because the probability measure ,(q, w'.t)is
null for g’ € I. Then the non-connected structure chosen for [ =LUL
(namely I[N [=) entails that the product wilu from (22) is a sum of
two terms

(25) w(w', Yo MIup(@’ w', ) = w(w’, dap, Mg w', 1)
4+ wlw', e MM nla w', ty),

(obvious notations) of which one is null for any given q', since one S
possesses one beable ‘position’ property, so that either g’ € I, and then
q' & I, or vice versa. However, confrontation of (25) with (22),(23), (24)
shows that in general

wiw', Paps J\)Huh.h(q', w', tg) # wiw', iy, MIT(q', W', to)s
(0 G Mg W 1) # WO 2, NI W T

because the sum of the two last ‘interference’ terms in the second
member of (22) is not null for any by, Yo, @, b, and w. It is null for the
particular case w = g(q) (because of I,nI,=9) so that for these
quantities the non-equalities (26) transform into equalities. But for
w# g(q) the term wilg, from (25) depends — as the first non-equality
(26) shows —on the whole superposition state vector dy = ar + b,
even though this term is defined on I, alone and even though I, N [, = 6,
the distance d;, which separates I, from I, being moreover arbitrarily
big, as (21) permits. The symmetric argument holds for the term willyy g,
from (25). In this sense the product w( )1, from (22) has a
mathematically non-local dependence on Yy, q.e.d. The lemma proved
above generalizes to any relevant joint probability from (17) the
mathematical non-locality of Wigner's joint probability (1) (expressed
by (11), (12), (13)).

But w(w', s, A) designates a process. which. in addition, takes a
non-null time-interval Az(w). Therefore, in order to investigate whether
or not the mathematical non-locality brought into evidence above does
involve physically non-local phenomena, time has to be taken into
account also. This is what one shall do now:

The hypothesis (h) has a rather obvious consequence. namely:

(26)
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¥(r) is associated at the time ¢, throughout any local process which
involves the system § during a period At = ¢/ — t, the transforms by this
process of the beable properties assigned to S at the initial time ¢, remain
confined inside the portion corresponding to At of the light-cone of the
support I of ¢(t). (This formulation holds with respect to any given
space-time referential and, whether or no, from ¢ on the quantum theory
continues to associate an individualized state vector with S.)
Consider then a statistical ensemble of systems S for each one of
which, at the constant time 1, after the preparation of ,,, the new state
¥ is prepared out of Yap» and then a w-measurement is performed on
S(y,) (the choices (20), 21) being fulfilled). Under these conditions, if
the consistency relation (22) for y,, is satisfied. then the condition (23)
for 4, is violated, unless some non-local effects take place. Indeed:
The consequence (c) of (h) together with (20) and (21) entail that
throughout the time-interval Ar = At,r + At(w) taken by the global
process [preparation for S of the state described by ¢, out of the state
described by y,, + w-measurement on $“’] the transforms by this
process of the beable properties assigned to S at ¢ remain confined
inside two disjoint and space-like separated space-time domains. But
according to (26) the consistency condition (23) for ¢, can be fulfilled
only if the product W(op )1, changes into the different product
w(Y)I1. This is a required Statistical change, but it can come about only
if individually the beable properties realized for each S on Iat ¢,
undergo during At a transformation different — in general — from the
transformation that would have taken place if the state of that S would
have continued throughout At to be described by ,, (i.e. in absence of
the action on I, of an obturator or filter). In other words, each one action
of preparation of a state ¥ out of a state Y, for one S, even though it
takes place on I,, must-in general - somehow cause a change, and
during At, of the individual properties of that S on I;. Now, if such a
change does indeed happen, it can be only non-local, since the portions
corresponding to At of the light cones of 1, and of I, are two space-like
separated space-time domains. While, if the specified change does not
happen, (23) for ¥ cannot be fulfilled, in consequence of the first
non-equality (26). This example suffices for proving Theorem 2.
Quite independently of any experimental investigation which it might
suggest, this conclusion is a theoretical fact,

General hidden variables framework. Theorem 2 can be generalized
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the distribution predicted for ¢, is found. then there is non-locality.

In the second place: when it is tried to define the significance to be
assigned to the various possible results of the experiments for verifying
Bell's inequality, the question of where the object named a ‘two system’
does beably ‘exist’ comes into play irrepressibly, raising novel and
fundamental problems[15], even though it is absent from Bell's demon-
stration. at least explicitly. (Implicitly it must somehow intervene. since
the location of the two registering devices used is not chosen in-
dependently of the maxima of the presence probability for the two
‘parts’ of *S”, calculated with the help of the state vector of 'S".)

From these remarks we conclude that the question of the relation
between the beable location of *S” in the physical space and the support
of the quantum mechanical state vector of ‘S plays in fact an essential
role in any locality problem. no matter whether *S’ designates ‘one
system” or ‘two systems’ and notwithstanding the formal descriptive
differences.

In this perspective, the explicit presence of this question in the
one-system demonstration appears as a specific and interesting feature,
drawing particular attention to the relations between reality and the
descriptive language of quantum mechanics.

3.10. Experimental Study

Theorem 2 and its generalization suggest an experimental study which
we shall now indicate.
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Preparations (Figure 1). A non-monochromatic and low int;‘:ns;t.y
intermittent source o emits microsystems S. At a distance d from o is
pléced a spherical screen S, of radius d. centred on o. Two circular
windows W, and W, are cut out of S. The distance d,, which separates
the centres of W,, W, can be chosen arbitrarily big by increasing d. At
the right of S the windows W,. W. are continued by widening walls
playing the role of guides G,. G, (Figure 1). In these conditions e:‘n:h
individual system S emitted by o-is described by quantum mechanics,
at the left of S. by a spherical wave packet ¢'. the front of which
reaches at some given moment f, simultaneously, both windows W,
W,. From that moment on, at the right of § quantum mechanics
describes the considered one system S by the superposition ¢ =
(U\/i)u';, + (Wi)wz of the two packets ¢, and ¢, transmitted respec-
tively by the two windows W, and W.. Because of the guides G,, G,
the supports I,, I, of o, ¢». are finite, disjoint, and separated by the
arbitrary distance d,,. Thus at the right of S one has prepared a
superposition state of the type utilized in the proofs of Theorem 2.

The state ¢, can be prepared out of ¢ = V2, + (IIV2)us, by
introducing an absorbing wall inside the guide G-, at some distance S
at the right of the surface (virtual) of the window W, (Figure 1). The
state i, can be prepared similarly. :

First stage of experiment: verification of the quantum mechanical
predictions for w, i, Y» and . The distribution (and mean value) of
w is measured separately in ¢ (W,, W, both open), ¢, (W, constantly
shut) and s, (W, constantly shut). The results are compared in order
to see whether the quantum mechanical non-additivity of the w-
spectrum in ¢, with respect to the w-spectra in ¢, and ¢, is tr‘ufe or
not. The problem, in this stage, is to define the theoretical condltlgns
of observability of the sum of the ‘interference terms’ from the right
side of (22) (interference in the w-space, even though in the |'rh\,"\'i.u;l|
space ¢, i, have disjoint supports), and to define a procedure which
insures an w-resolution permitting the registration of the wantel
ference distribution, if it really exists. If in such approprate con

ditions the predicted interference w-distribution i not repistered, the
quantum mechanical prediction from the ripght sude of (22 s not frue
so that the non-locality Theorem 2 s oot troe cather, so that o forther
stage of locality mvestigations voowrelevant. Hoon the contrary the
w-interference term s observed, the Tollowimge stage v relevant

Second stave locality mvestigation.  For each system S emitted
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by o the superposition state ¢ is first prepared (W,. W, both open).
Then the preparation of ¢, out of ¢ is started ata moment £; by help of an
absorbing shutter A dropped inside the guide G,, at adistance 3 from the
surface of the window W,. An w-measuring device D(w) is placed inside
the guide G, at a distance ' = 3 + £ from the surface of the window W,
e being very small but sufficient for ensuring that when the front of the
wave of the system reaches the level ¢ + £ the preparation of ¢, has
already been accomplished (the term (I/\V2)¢, of ¢ has been sup-
pressed) so that it is the wave-packet ¢, which reaches the w-measuring
device D{w). The condition

dp
21y —+ At <—
(21) V¢1+ C

is required. where Vy, is the group velocity for ¢, (depending on the
mean energy chosen for the systems emitted by o). At and ¢ being
defined by (21). The device D(w) and the absorbing shutter A are each
time set in action simultaneously and D(w) is each time disconnected
after a time inferior to d,,/C. If by repetition of this procedure the
recorded w-distribution is identical with that found for ¢, alone in the
first stage of experiment (i.e. if the w-interference term, supposed to
have been previously found for ¢, is suppressed by the action of the
shutter A) then it has to be concluded that either non-local effects have
gone from I, to I,, or the object named one microsystem S somehow is
not confined on the support of the quantum mechanical state vector
associated with its state. The problem to be solved for this stage is to
realize the condition (21) while furthermore ensuring, as in the first
stage, conditions of observability of w-interference fringes (in the
w-space).

Any observable w for which (20) is fulfilled can be envisaged.
spin-components included. Upon a more detailed analysis the spin-
component along the direction perpendicular on d,, might appear to be
the most convenient choice. For the moment, however, we reserve our
opinion concerning both the choice of w and that of the measurement
procedure. If these choices raise questions and seem queer, this is a
reflection from the queerness of the quantum mechanical theory of
measurement. We believe that this queerness should not be allowed to
act as an obstacle to any attempt of verifying the concepts and
predictions of the orthodox theory of measurement.

-
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4. REMARKS ON THE SUPERPOSITION STATES

Throughout the preceding study, the superposition states have plaved
an essential role which draws attention on them.

There exists a tendency for confounding the superposition states
with the mathematical decompositions permitted by the expansion
postulate. This tendency has its source in the fact that the quantum
mechanical formalism prescribes the same algorism for the cal-
culation of predictions concerning a superposition state or concerning
a mathematical expansion. However, quantum mechanics does
distinguish - by their definitions - the superposition states from the
mathematical decompositions. When this distinction is explicitly
taken into account and then confronted with the identity of the
algorisms prescribed for calculating the predictions, reasons appear
for doubting the truth of certain predictions concerning superposition
states. Indeed:

A quantum mechanical state vector ¢ is defined at any time by the
specification of boundary conditions B which determine an ‘initial’
form y(q, t;). and of an evolution operator H which determines the
transform of y(q.t;) by the passage of time. We shall then write
symbolically ¢ = (B, H). The physical realization of both B and H
is necessary for the physical realization of ¢(B. H).

Let us now adopt the Schriédinger representation:

-In a superposition state = ays, + by, the boundary conditions are
different for ¢, ¢, ¢,, while H can be the same, or not. To take an
example, we suppose that H is the same. Then we write (B, +
By, H) = ayn(B,, H) + by(B,. H), with a, b complex constants and .
Y1, ¢ having a time evolution corresponding to H. When ¢,, ¢,
‘interfere’ in the physical space or in some other w-space, this
interference concerns two different states both realized simultaneously.

Consider now a mathematical decomposition of a state . according
to the eigenstates ¢, of a dynamical quantity Q. ¢ = Sic!don such as is
permitted by the expansion postulate. Boundary conditions B and a
hamlltoman H are realized only for 4. The ¢, are constant vectors and
the c! are complex numbers depending on B and H via the definition

C?(ro)=j¢(ta)¢o,.dq. c‘f(r)=f¢{r)¢o‘ dq.

Then we have to write Y(B.H)=Z.c!(B, H)$,. Here only ¢ is
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physically realized. while on the right side of the equality ¥(B. H) is
represented in terms of the standard state vectors ¢gq, conceived, but
not realized physically.

When the probability law for some quantity Q' # Q is calculated by
the same algorism

l J’ !btbfﬁ;dql = ‘ I{ﬂlﬁh i bl!f:)cbé;dq‘ '

or

-

J (Zictdo) s, da

fw)a;,dq|_=

applied indistinctly to the superposition (B,+ B, H)=
ay,(B,. H) + by(B., H) or to the expansion (B, H) = X; c{(B. H)dq,
this might involve erroneous identifications of statistics of real
interactions between physically realized states, with mathematical
interferences of standard states. conceived but not physically real-
ized. Therefore we envisage that the superposition principle might
introduce certain false predictions.

5. CONCLUSION

We have shown that Wigner's proof does not invalidate the concept
of a joint probability of the position and the momentum variables, but
raises instead a locality problem inside the one-system formalism of
quantum mechanics.

In a critical research it might be illuminating to examine in detail a
counter-example to a general assertion, instead of using it merely as a
sufficient basis for the global rejection of this assertion. In con-
structive attempts the aim is the perception of some maximally
unifying essence, and the choice of the maximal generality in the
formulations ensures indeed a progression towards this aim. But in a
critical attempt, on the contrary, the progress often lies in the iden-
tification of some particular circumstance of which a previous con-
structive effort has remained unaware, and which has therefore been
erroneously forced into a conceptual structure imperfectly fitted for
it, where its presence introduces distortions. Thus, in the present
case, the connections established between the one-system locality
problem and the particular type of state vectors for which this prob-
lem arises, suggest that the quantum theory might have erroneously
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mlegrated‘the description of momentum-dependent distributions, for
these particular states. While the study of the position distributiu.r; for
states ¢ = ay + by, with I, N I, # @ has contributed to lead towards
qyan.tum‘ mechanics. the study of the momentum- or spin—depcnden.[
dl?l!’]bU[lOﬂS for the states & = ay, + by - with Inh=@oriNL#0-
might contribute to lead beyond the bounds of quz;ntum mechawmics,
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NOTES

' The del Bruglle~Bohm functional of this type is unnecessarily a priori restricted and
Ehereby it introduces distortions{11].

In a prccedlng_ work[11] it has been shown that the very weak hypothesis according
to w_hich thelot:!]ect denominated one microsystem cannot progressively extend over a
spangt dumaln‘mdcﬁnilely increasing, suffices to entail a position distribution which i;l
certain states is not rigorously identical with the quantum mechanical one. Bul the
;lgg:;:&ls truth of the quantum mechanical prediction in this case has ne‘ver been

B .
Discussions on this subject with Dr D. Evrard h i i
ooty ; ave strongly contributed to the formation

>y 2 :
It seems interesting to compare our considerations on pp. 122-133. with the very
pertinent analyses of Belinfante [16] on the hidden variables altempts made up to now.
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