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FOREWORD

The articles collected in this volume were written for a Colloquium on
Fifty Years of Quantum Mechanics which was held at the University
Louis Pasteur of Strasbourg on May 2-4, 1974, in commemoration of
the original work by De Broglie in 1924.

It is our hope that this volume will convey to the reader the idea
that quantum mechanics, besides being a fundamental tool for scien­
tific workers today, is also a source of a number of questions and
thoughts about the interpretation of the foundation of quantum
mechanics itself. This gives rise to problems of a philosophical and
logical character and has repercussions on other domains such as the
theory of gravitation.

Besides the papers presented at the Colloquium, an article has been
included"by D. Bohm and B. Hiley. This compensates, perhaps, for
the article of S. Kochen, whose manuscript unfortunately did not
reach us in time for inclusion in this volume. A few months after this
Colloquium we learned of the death of Professor Jauch, who had taken a
lively and crucial part in its discussions. We have been extremely
saddened by the news of his death, and would like to express our long
standing indebtedness to him as a physicist.

We are grateful to Professor B. d'Espagnat who kindly helped us in
organizing the Colloquium meetings and to Professor G. Ourisson
who, as President of the Louis Pasteur University, gave us en­
couragement and support to our enterprise. We would further like to
express our thanks to all those who have contributed to the work
involved in the Colloquium and the publication of this book, and
especially to Dr J. Simmons who agreed to check the English version
of several contributions.

J. LEITE LOPES
M. P ATY

~ ....-.. ~

M. MUGUR-SCHACHTER

THE QUANTUM MECHANICAL ONE-SYSTEM
FORMALISM, JOINT PROBABILITIES

AND LOCALITY

"II ne faut pas que I'esprit
s'arrete avec les yeux. car la vue
de l'esprit a bien plus d'etendue

que la vue du corps".

M;t\ebranche

R. Magritte

1. INTRODUCTION

Professor Wigner[1] has proved a theorem which is believed to
establish the impossibility of associating with any state vector a joint
probability of the position and momentum variables. In this work we
study this important theorem and we show that in fact it does not rule
out the joint probability concept, but that instead it leads to a locality
problem inside the one-system formalism of quantum mechanics,
similar in certain respects to the problem formulated by Bell [2] inside
the two-systems formalism of quantum mechanics.

The analyses which we carry out draw attention to the super­
position states with non-connected support, raising doubt concerning
the truth of certain quantum mechanical predictions for such states.

J. &ite Lope.! and M. Paty (td.!.). Quantum Mechanic.!, a Half Century lAta, 107-146. All Right.s Rejero~d
Copyright © 1m by D. Reidel Pobli$hing Company, Dordrecht·Holland



-------_._---~-~---_..-----------------~- ..•

108 M. MUGUR-SCHAcHTER THE QUANTUM MECHANICAL ONE-SYSTEM FORMALISM 109

•

2. STUDY OF WIGNER'S THEOREM ON JOINT PROBABILITIES

2.1. Wigner's Demonstration

We start by reproducing Wigner's demonstration. This will be done in
detail, in order to facilitate any eventual comparison.

Given a one-system wave function I/J(q) (in one-dimensional no­
tation), Wigner studies a joint function P (q, p) of the positional
variable q and the momentum variable p, on which he imposes the
following conditions:

(a) that it be a 'hermitian form of I/J(q)' , i.e.

(1) P(q,p)=(I/J,M(q,p)t/J),

where M is a self-adjoint operator depending on p and q, and
(b) that P (q, p), if integrated over p, give the proper probabilities

for the values of q, as

(2a) Jp(q,p)dp=It/J(q)12,

and, if integrated over q, give the proper probabilities for the mo­
mentum, as:

(2b) J P(q,P)dq=(21Th)-tIJ t/J(q)e-ipqlhdqr·

The condition (b) admits the somewhat milder substitute that
P (q, p) should give the proper expectation value for all operators
which are sums of a function of p and a function of q, as

(2) J J P(q, p )(f(P) + g(q» dq dp = (t/J, (fG a:) + g(q») I/J).

A third 'very natural' condition on P (q, p) would be that it IS

non-negative for all values of q and p:

(3) P(q, p):;;!: O.

But Wigner demonstrates that the conditions (a) and (b) are incom­
patible with (3). This is realized by showing that the assumption that
a P(q, p) satisfying all three conditions (a), (b) and (3) can be
defined for every 1/1, leads to a contradiction.

The contradiction is obtained for wave functions t/J(q) of a par-

ticular form, namely for t/J which are linear combinations (at/JI + bt/J2)

of any two fixed functions such that I/JI vanishes for all q for which t/J2

is non-null, and vice versa. Wigner starts with the following lemmas:

LEMMA 1. If I/J(q) vanishes in an interval I, and if g(q) is zero
outside this interval and nowhere negative therein, one has for the P

corresponding to the I/J(q) above:

(4) Ip(q,p)g(q)dq=O,

for all p (except for a set of measure zero).
This follows from (2) with f = 0: the integral of (4) with respect to p

vanishes because the right side of (2) vanishes

(4a) II P(q,p)g(q)dp dq = (t/J,g(q)l/J) = o.

However, the integrand with respect to p, that is the left side of

(4), is non-negative for the g postulated, as long as (3) holds for P.
It follows then that the integrand with respect to p must vanish

except for a set of p of measure zero, q.e.d.
Furthermore, (4) is valid for every function g(q) which satisfies

the conditions of Lemma 1. It can then be concluded in a similar way
that:

LEMMA 2. If t/J(q) vanishes in an interval I, the corresponding

P (q, p) vanishes for all values of q in that interval (except for a set of
measure zero).

Wigner's demonstration then continues as follows:
Let us consider two functions I/Jl(q) and t/Jiq) which vanish outside

of two nonoverlap ping intervals II and I2 respectively. Because of

(1), the distribution function Pab(q, p) which corresponds to I/J=
at/Jt + bI/J2 will have the form:

(5) P ab(q, p) = lal2p 1+ a* bP 12+ ab* P21 + \b\2P2.

Setting b = 0, we note that PI is the distribution function for t/Jl'

and similarly, setting a = 0, P 2 is the distribution function for t/J2'Let
us consider (5) for the q outside the interval It. Since (according to
Lemma 2) P t vanishes almost everywhere for such q, the distribution
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Since this must be valid for all a and b, it requires identically in p:

(6) Pab(q, p) = laI2PI(q, p) + Ibl2Piq, p).

function (5) cannot be positive for all a and b unless both PI2 and
P21 vanish if q is outside II (except for a set of measure zero in q and
p). A similar conclusion can be drawn when q is outside I2• Hence.
we have instead of (5), almost everywhere,

This means that the distribution function Pab is almost everywhere

independent of the complex phase of a/ b. But this is impossible if P ab

is to give the proper momentum distribution for tjJ= atjJl + bl/lz, i.e. is
to satisfy (2b). Indeed, let us denote the Fourier transforms of tjJj(q)

and tjJzCq)by CPt(p) and CPzCp).Equation (2b) then reads

(7) lal2 f P1(q,p)dq+lbI2 f Pz(q,p)dq

= la 12\CPI(pW + Ib!2\CPz{pW + 2Re ab*CPt(p )CP~(p).

DEFINITION (1). Definition (1) is not the most general one
conceivable. The distribution operator M is required self-adjoint and
dependent exclusively on q and p. The second requirement entails for
M independence on tjJ, and this entails P (q, p) as a sesquilinear form
of tjJ. Now the functional P(q, p) is researched such as to accept the
significance of a probability. Then the concept of a probability
rcquires by its definition the reality of P(q, p) so that P(q, p) must be
indeed a hermitian form of tjJ: the condition that M be self-adjoint
cannot be dropped. But the independence of M on tjJ is not imposed
via the probabilistic significance desired for P(q, p), so that in the
examined context it is an arbitrary a priori restriction. We shall now
show that:

PROPOSITION. In absence of the arbitrary restriction to a
sesquilinear form for P(q, p), Wigner's demonstration cannot be
realized.

Proof. Instead of (1) we start out with the most .general
definition a priori conceivable for a joint probability distribution of q

Framework of the proof
The framework consists of the postulates: (a) (hermitian forms
defined by (I)), (b) (the two marginal conditions (2) for any tjJ), and
the non-negativity condition (3). The assumptions of non-negativity
and of hermiticity are entailed by the significance of a probability
required for the distribution P(q, p), hence they cannot be dropped
without disintegrating the very problem chosen for examination,
which consists precisely in the possibility of a probability distribution
P(q, p). Thus eventual unnecessary restrictions can be implied only in
Definition (I) and/or in Postulate (b).

some of them might not be essential to the definition of the problem.
or even might vitiate it. Obviously only an explicit examination of the
logical relativities of a proposition to the framework of its proof can
show which restrictions can or must be dropped.

Furthermore the bearing of a theorem is relative also to the inner
structure of the proof (via one counter example, or directly for the
whole class considered).

We shall now examine the various logical relativities of Wigner's
theorem, which define its bearing.

M. MUGUR-SCHACHTER

(7a) CPI(P) . CP~(p) = O.

But this is impossible, since CPt(p) andCP2(p), being Fourier trans­
forms of functions restricted to finite intervals, are analytic functions

(in fact, entire functions) of their arguments, and cannot vanish over
any finite interval.

Professor Wigner formulates the result of his demonstration in the
following terms (p. 28):

"no non-negative distribution function can fulfil both postulates (a)

and (b)".

2.2. Bearing of Wigner's Theorem

Preliminaries
There seems to be a tendency to interpret Wigner's theorem as the

expression of an absolute impossibility of a joint probability of the
position and momentum associable to the quantum mechanical state
vectors. Such a tendency betrays the real conceptual situation.

Quite generally a demonstrated absolute impossibility is im­
possible: the framework inside which an impossibility is demon­
strated ineluctably restricts its bearing. Some of these restrictions
cannot be suppressed without disintegrating the studied problem, but

110
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and p, namely

(1)' P(q, p) = (1jJ, lvf(q, p, 1jJ)1jJ),

where the distribution operator M(q, p, 1jJ) is self-adjoint and depends
on q, p and 1jJ, All the other assumptions introduced by Wigner are
left unchanged. We introduce the notations: ljJan is a state vector
aljJl + bljJ, where the supports of 1jJ\ andljJ, are disjoint; P~b, PI, P2 are
respectively the distributions obtained for ljJab' 1jJ\ and 1jJ2 by use of
Definition (1)'; P;2 and P21 are respectively the analogs of PI2 and
P'l from (5) obtained by use of (1)'. With these notations the
expression of the joint distribution for ljJab yielded by Definition (1)'
IS

(5)' P ~b(q, p) = la 1'(IjJI'M(q, p, ljJab)ljJl) + a* bP I,+ ab* P 21

+ Ibl'(IjJ" M(q, p, ljJab)IjJ,).

In Wigner's expression (5), the factor of la 12 in the first term and the
factor of Ib I' in the last term identify respectively with the distribution
PI yielded for 1jJ\ by Definition (1) and with the distribution P,

yielded for 1jJ2 by Definition (1). The sequel of Wigner's proof is
directly founded on this fact and on Lemma 2, as it can be verified by
inspection, But this fact is not reproduced in Expression (5)'. Now
this is so precisely because of the dependence on IjJ of the distribution
operator M from (1)', which introduces ljJab in the argument of M,
instead of, respectively, 1jJ1in the factor lal' and 1jJ2in the factor of Ibl'.
For this reason - even though Lemma 2 continues to hold in the
assumed context - Wigner's proof can no more be reproduced with
the nonsesquilinear definition (1)', q.e.d.

If not Wigner's proof, then Wigner's conclusion might be general­
izable - by some other proof - to any definition of a joint probability
subject to both marginal conditions (2). But in fact this cannot be
done either, as a well-known example suffices to show: the 'trivial' or
'correlation-free' distribution IIjJ(q)1211>(p )12 (where 1> is the Fourier
transform of 1jJ) is a non-negative hermitian and non-sesquilinear form
of IjJ defined for any IjJ and which fulfils both marginal conditions
(2). Therefore it can be concluded that Wigner's theorem has no
bearing on a non-void class of joint probabilities a priori possible. On
mathematical grounds (considerations of continuity) it seems pro­
bable that this class is not reduced to the trivial distribution alone. It

cannot be decided whether this class contains or not 'interesting'
members. as long as the structure of all the conditions to be imposed
lIpon a joint probability (time evolution, mean conditions, cor­
respondence rules between functions and operators, etc .... ) has not
yet been thoroughly defined and studied as an organic whole. The
attempts made up to now in this direction are not numerous and - as

far as we know - none of them is both complete and guided by an
explicit and coherent system of physical criteria for the choice of the
mathematical conditions.

Postulate (b). Let us now examine the two marginal conditions
(2). In a first approach we admit the truth of the quantum mechani­
cal predictions expressed by the second members of (2). for any 1jJ.

In a second approach we question this truth for the particular states
dcscribed by vectors ljJab'

First stage: The truth of the predictions from the second members
of Relation (2) being a priori posed for any 1jJ, the conditions of
consistency with quantum mechanics expressed by use of the first
mcmbers of (2) are not the most general ones conceivable. They are
in fact very restrictive, requiring the observability of the integrated
distributions P(q)=J P(q,p)dp, P(p)=J P(q,p)dq (even though
not necessarily of the values q, p also). The joint probabilities P(q, p)
subjected to less restrictive conditions of consistency escape Wig­
ncr's theorem.

Second stage: An exhaustive examination of the logical relativities
of Wigner's theorem obliges us to raise finally also the question of the

trllth of the second members of both conditions (2) for the par­

ticular state vectors ljJab with non-connected support. Indeed Wigner's
theorem being based on a counter-example proved for the mentioned
states. the theorem would remain without foundation if for these

particular states the right-hand members from (2) were not both
truc. This question of truth, even though brought in merely by logical
considcrations, seems less irrelevant from the physicist's point of
vicw when it is realized that probably the momentum distribution in a
state ljJab with non-connected support has never been measured, so
that the 'existence' of an interference term is so far a purely formal
fact; not even the assertion of measurability of the momentum
'observable' seems to have an obvious operational meaning, neither for
sllch states in particular, nor in general (more detailed remarks can be
found on pp. 132, 134, 135).
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Inner structure of the proof

Wigner's theorem is demonstrated by producing a counterexample to
. the initial assumptions, which holds for the state vectors of the

particular type tf1ab = atf11 + btf1~ where the supports of tf11 and tf12 are
disjoint. Even though via this counterexample a general impossibility
(for any tf1) is established indeed, this impossibility, nevertheless, has
no bearing on the sub-class of state vectors of a type different from

tf1ab, which contains the major part of the state vectors coming usually
into consideration: the theorem leaves open the question whether yes
or not for the state vectors tf1 =T-tf1ab a non-negative form (1) can fulfil

both marginal conditions (2). In certain contexts this question might
appear as non-trivial from the physicist's point of view (if, for
instance, the quantum mechanical predictions for the momentum in
states tf1ab were false).

Conclusion

The preceding analysis shows that Wigner's proof does not exclude
the possibility of any non-negative joint distribution function of the
position and momentum variables associated with the quantum
mechanical state vectors.

Notwithstanding this conclusion we believe that Wigner's proof has
an outstanding heuristic interest. Indeed, once an analyzed knowledge
has been obtained concerning its structure and its bearing, this proof
suggests developments which disclose questions of a fundamental
conceptual importance. The remainder of this article is devoted to
these developments.

3. SUPERPOSITION STATES WITH NON-CONNECTED SUPPORT
AND NON-LOCALITY OF THE ONE-SYSTEM FORMALISM OF

QUANTUM MECHANICS

3.1. The Problem

The counterexample on which Wigner's theorem is based possesses
characteristics which suggest the possibility of a problem of locality
implicit in the one-system formalism of quantum mechanics. Indeed,
the state vector directly concerned by the proof is a superposition
vector tf1ab = atf1j + btf12 with non-connected support. The distributions
of the position and of the momentum predicted by quantum me-

dl:lllics for sllch a stalt: arc respectively

!H) It/I"" (II W .-= 1(/I~Itlll( l/ )I~+ Ib fl tf12(q W'

II lid

(II) 1'1>,,/,(1' W -= III I~I (!)I(P W + Ib 121ct>2(PW + 2Re ab * ct>1(P)ct>!(p),

wlll'll' 'i'",,, '/'1' III~ are Ihe Fourier transforms of, respectively, Wab, tf1!,

'/',1' SIIPIII>'>CIIOW:I joint probability P(q, p) which fulfils the marginal
I'olidilillil', (:~) for any 'II, hence in particular also for tf1ab (by the
IIllIdv~d~;nf Wigrll:r's proof we know that such:: joint probability, if it
I~••••h"" 1'IIlIlIni have a uistribution operator independent of tf1). If the
filet 111' I ','i,,( II. tJ) of conditional probability of p given q is explicitly
wl'llll;lI, 111l:marginal condition for q applied to tf1ab, tf11 and w~ leads
(wllh IlhvioliS notations) to

(I II) 1',,/,(11, {I) = Pah(q)Pab.pfq(q, p)

= lal~PI(q)Pab,pfq(q, p) + IbI2P2(q)Pab,pfq(q, p).

Wlll'lI we now examine (10) we are struck by the following aspect:
11111' 11I1t:IIgiven pair of values qj, Pk one of the two terms of (10) is
111111,,.II1CI;I:illler III E II and then ql '" 12, or vice versa. Nevertheless
W 111,'1I 1111; l,;onditional factor Pab,pfq(q, p) is tied to a value of the
1111'.111011vlIl'iabk belonging to II we have in general

(II) I'", ..,,/,,(I{I Ell, pd '" PI.pfq(ql E 110 pd,

I1l1dwhl'l1 1'"".1'1,,( ({, fl) is tieu to a value of q belonging to 12we have in
I.I!.'II I'rrll

( I:~) I'"/"",,,! f{ I (= I.~.fh) =T-P2. pfq{ql E 12, pd.

'l'ld!. It. 'ill hct,:HIISl: (t» and the marginal condition for P applied to
1/1"". 1/11 IIlId III~ clltail in general for Pab(p) = J Pab(q, p) dq that

( 1\) 1'",,(fl)1 I'I(P) + P2(p).

(WlulI"I'·, IIq~lllm~nt: the product qJl(P)ct>!(p) from (9) is not null
IIIunllclllly ill fI for any tf110 tf12') Thus when Pab.pfq(q, p) is tied to
II 111\1111;.il:i I!IIIIIC is not determined only by tf11 with support II' it
dll\H:lllbi 1111the whole superposition tf1ab = atf11 + btf12, and this is so

IIflIWllh·.IHlIdili/'. Ihl: fact that the support 12of tf12 is separated from II
hy 1111/I,.h;trt/ry dist/llIce (the symmetric proposition holds when
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3.2. Criterion for the Choice of Conditions of Consistency

Before researching whether the mathematical non-locality discerned
in the example from Wigner's proof entails or not a problem of

Pab.p/q(q,p) is tied to Ie alone). This is a mathematical non-locality of the
functional dependence on 1f;abof the conditional probability Pab.pjq(q.p).
emerging in the confrontation between the supposed joint probability
Pab(q, p) and the topological characteristics of the support of 1f;ab.What
Wigner's proof really shows is that a sesquilinear definition of P(q, p)
cannot engender this mathematical non-locality. while the marginal
conditions (2) do demand it for superposition states 1f;abwith a
non-connected support.

Now the mathematical non-locality specified above expresses ex­
clusively spatial aspects of the confrontation between the concept of
a joint probability and the non-connectedness of the support of 1f;ab'
Therefore - as it stands - it has no established relation with some

physical problem of 'locality' in the sense of the theory of relativity,
where time plays an essential role. Furthermore this mathematical

non-locality might vanish like a non-essential aspect when conditions

of consistency less restrictive than (2) are required for P(q, p) on
the basis of some more analyzed physical criteria of relevance of a
joint probability. The aim of this section is to show that in fact the

mathematical non-locality perceived in the example from Wigner's
proof is an essential aspect of any relevant joint probability P(q, p)
(and of any other probability distribution derived from a relevant
P(q, p» and that this formal non-locality does entail a problem of
physical non-locality inside the one-system formalism of quantum
mechanics.

The pursuit of this aim will draw attention on specificities of
the superposition states which distinguish these states fundamentally
from the mathematical decompositions permitted by the expansion
postulate. Along this path we shall be led to the notion that the
superposition principle - even though it materializes a mathematical

possibility and even though it permitted to describe so accurately the
wave-like aspects manifested by certain position distributions of

microsystems - might nevertheless introduce inadequate predictions,
either false or unverifiable, for the dynamical quantities which depend
on the momentum and for the spin.

physical non-locality, we shall first specify conditions of consistency
with quantum mechanics such as they determine a joint probability
concept P(q, p) at the same time minimally restricted and 'relevant'.
This of course requires criteria of relevance. We believe that the
clJicient criterion is that of relevance to the 'reduction problem',
which is the core of the multiform and now more than fifty years old
controversy on the significance of the quantum mechanical for­
malism. This problem is well-known: the quantum mechanical for­
malism yields only a statistical prediction concerning the outcome of
one individual act of measurement, while this act brings forth a

unique well-defined result thereby 'reducing' the predicted spectrum
to a certain certitude. The main purpose of those who desire a hidden
variables substitute to quantum mechanics is to obtain a 'deter­
ministic' solution for the reduction problem. Such a solution is
researched along the following lines. It is postulated that the studied
system possesses, independently of observation, certain intrinsic
properties statistically describable by a virtual distribution of values of
an appropriate group of hidden parameters (hidden to quantum me­
chanics but not necessarily also to observation). For one given system,
at any given time, only one of all the possible groups of values for this
group of hidden parameters is conceived to be realized. Each measur­
ahle 'quantity W of a system' is conceived as related with a cor­
responding function hw of the hidden parameters. An individual act of
measurement of w is conceived as a process of interaction between
Ihe system and a w-measurement device, which act induces into a
delerministic evolution the unique but unknown value hi. w possessed by
II .•. at the initial moment of this act of measurement. The unique
ohserved value Wi brought forth by the act of measurement can thus be
considered to emerge as an observable result of the system-device
interaction, deterministically connected with the unique preexisting
initial value h;.w via the interaction evolution. It has to be stressed
however that the existence of a deterministic connection between each

observed Wj with one value hi•w does not entail a one-to-one relation
betwcen the values hi .••. and the values Wi; the assumption of such a
onc-to-one relation is obviously not essential for a deterministic solution
of the reduction problem. Therefore it would be unnecessarily restric­
tive.

Since the main objective of the hidden variables attempts is to
develop a deterministic solution to the reduction problem, we shall

I

I

I I

I

I
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discard in what follows the conditions of consistency which engender
joint probabilities a priori inadequate for the research of a deterministic
solution to the reduction problem.

3.3. Inadequacy of both Marginal Conditions (2)

The marginal conditions f P(q, p) dp = P(q) = 1t/1(qWand f P(q, p) dq
= pep) = (21Th)-'lf t/1(q) e-ipqih dqle require the observability of both
statistical distributions P(q) and pep). Thi~ does not entail that the
individual values of the variables q and p have to be also observable, nor
does it fix the physical significance to be assigned to the symbols q, p.

If the possible significances of q, p are considered, it is immediately
obvious that the significance of 'pure observables' (i.e. values of some
observable entities for which the denominations of 'position' and
'momentum' are decreed, but which are defined exclusively by the
specification of some experimental circumstances involving the
system, and where these entities emerge) cannot be relevant to the

reduction problem: the criterion of relevance to this problem requires
a definition of q, p independent of observation. Discarding then the
pure-observable significance and postulating for q, p a significance
independent of observation, we shall now show that, whatever hypo­
theses are chosen concerning the observability of the individual

values q, p, the marginal conditions (2) engender a joint probability
P(q, p) which is either unnecessarily restricted or self-contradictory.

The beable significance for q, p. Any property possessed by a
system independently of observation has been called by Bell a beable
property. We like this denomination and we adopt it. We shall now
specify in detail the two important particular concepts, of a beable
position and of a beable momentum.

Beable position. By definition this concept consists of the as­

sumption of beable properties of the system which possess charac­
teristics describable with the aid of the classical quantity position, i.e.
which in any referential are, at any given time, non-negligible only in­
side a finite and relatively small spatial domain. Such an assumption
is equivalent to a minimal model of the object named 'system'.
However - by its minimality - this model does by no means entail the

na'ive atomistic, multitudinist hypothesis concerning the structure of
the microreality; the finiteness and the smallness of the domain inside

which the conceived beable position properties are 'confined', are

dq
( 1·1) {J = K-

dt '

will'I C K is a factor of proportionality playing the role of an inertial
Inll~~•. This individual relation is a non-trivial and important im­

plkal inll of the concept of a continuously moving beable position,
"CUIlISl; il entails statistical correlations and these can be found to be

,dl hcr compatible or incompatible with a given condition of consistency

only relative to some specified (and modifiable) degree of ap­
proximation chosen for the description of these properties, while their
'cxistence' is defined only with respect to some specified but arbitrary

rangc of spatial dimensions characterizing the chosen scale of
(imagined) observation. The concept of the object called system
itself, to which a beable position is assigned. emerges only relatively
10 :;omc choices of such approximations and of such a scale. Thus the
1101ion that a beable position is possessed by what is named system
has nothing absolute in it. In particular it leaves open the problems of
separability of the systems and of locality of the phenomena in which
(hey are involved.

/leah/e momentum. It is not impossible to conceive a be able

posilioll which does not perform a continuous dynamics, but which
Illercly consists of a discontinuous juxtaposition of an uninterrupted
;,lIcccssion of locations possessed by some properties of the system,
ill I hl: scnsc specified above. But this sort of a beable position would
Il:plUdlice the 'essentially probabilistic' features which a deterministic
~,Ollililln for the reduction problem attempts to remove. Such a beable
~.iHllilkance for q in the argument of a joint probability P(q, p) would
therefore yield a concept irrelevant to the reduction problem, so that
we disl.:ard it. If then a be able position which does perform a
t'lIlIlillllOIiS dynamics is assumed, ipso facto some definite continuous
111I1t;varial ion of this beable position is assumed. This - by definition­
hi whlll wc (,;all a beable momentum.

TI,,' II/'"hle individual kinematic relation: Thus the assumption of a

\:11111illllllllsly moving be able position of a system is interdependent
wllh Ihe assumption of a beable momentum of this system. These two
111111\:11assumptions are equivalent to the assumption of the descrip­
live:; rckvancc of a position variable q and a corresponding momen­
tum variahle p, tied to one another by the individual kinematic relation
(III olle dimcnsional writing)
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This entails that, if at some initial time to, (1.2a) is realized,
throughout the future t > to of this time the location with respect to 02
of the maxima and minima of P(q) keep reversing by a continuous
process, with a time-periodicity

I I
(/J(q) = V2cf>pJq)+ V2cPP~(q),

wlll:re <pp,(q) and cPp~(q) are eigendifferentials of the quantum me­
chanical observable momentum (vector), corresponding respectively

10 the eigenvalues PI and P2 the directions of which make an angle
,,-; D, the norms being equal and non-null (ipil = jp21) "" O. Since this
\Iate requires a two-dimensional description we refer it to two
ml hogonal axes ox, oz. the axis ox being chosen parallel to the
hi..,ectrix of a. The quantum mechanical position distribution

1,/1(.\. :W = !!/J(qW is then uniform along ox and periodic along 0::
l\lrt!1ermore, this quantum mechanical distribution is stationary. We
consider now a joint probability distribution P(q, p) associated with
Ihe chosen !/J and fulfilling both marginal conditions (2); q and p in
the argument of P(q, p) are assumed to be observable beables. Then
Ihe be able character of q. P entails that at each given time each
in..,tantaneous individual value of the momentum variable possesses a
kincmatic Definition (14) p = K(dqfdt) according to which it is

generated by the time variation of a corresponding joint q. Via this
kincmatic definition and the hypothesis of observability of the

individual p the marginal condition (2b) for the momentum entails
consequences for the time variations of the individual values of the
[losition variable, and these in their turn entail con.sequences for the
~;tatistical position distribution P(q) = f P(q, p) dp. Now for the chosen
:-.Iate vector the consequences on P(q) of (14) and (2b) are not

compatible with the stationarity of P(q) required by the hypothesis of
obscrvability of q and by the marginal condition (2a) for the position.
Indeed (14) and (2b) entail non-null z-components for the time
variations of the (observable) q

I

-.....l

with quantum mechanics envisaged for a joint probability distribution of
beable q, p.

Rejection of the requirement of both marginal conditions (2) for
beable q, p: We consider two complementary hypotheses concerning
the observability of beable values q, p, assumed to exist for a system:
either not both these values are observable, or they are both ob­
servable. Either of these hypotheses leads to the rejection of the
requirement of both marginal conditions (2). Indeed, we consider first

an inobservable beable q or p. Then it can be rather trivially pointed out
that:

PROPOSITION I. The marginal conditions (2) entail an un­
necessarily restricted statistical distribution of the val.ues of an inob­
servable beable q or p.

Proof. Suppose that the value of the momentum beable is not

observable for some given state of the studied system S. Let us then
redenote this value pi in order to distinguish it from the observed
value produced by an act of momentum measurement performed on
S. Even though the individual values pi are not observable, the
marginal condition (2b) requires that the statistical distribution
P(p') shall coincide with the observable quantum mechanical dis­
tribution (21TIW'lf !/J(q) e-hipqjh dql2 of the values p (i.e. to each
unknown value pi corresponds one observed value p which arises
statistically the same number of times). This, however, is an un­
necessary restriction on the relation permitted between values
p I and values p: For ensuring at the same time consistency with
quantum mechanics and relevance to the reduction problem it suffices
to require that the observed values p alone have the quantum
mechanical distribution and that, furthermore, each one observed value
p be connected by the measurement interaction evolution, with one

preexisting value pi (included in a hidden distribution P(p') in general
different from the observed one).

An analogous argument holds for q.
We consider now observable beables q, p. We shall show that

THEOREM I. A joint probability distribution P(q, p) of observable
beables q, p, cannot fulfil both marginal conditions (2) for any state
vector.

Proof. We produce an example: Consider the state vector

(15)

(16)

dq: = P: = ±lp:1 ¥' O.
dt K

K dq. Kidt=---=-,
Ip:1 21p:1
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where i is the distance at to between two successive maxima of P (q).
This example suffices for establishing Theorem I. It shows that a

joint probability P(q, p) of observable beable values q, p which fulfils

both marginal conditions (2) for any t/J, is a self-contradictory concept.
Since a joint probability P(q, p) of beable q, p which fulfils both

marginal conditions (2) is either unnecessarily restricted or self­
contradictory and since, for a priori relevance to the reduction

problem, the beable hypothesis for q, p has to be conserved, we
conclude that at least one of the two marginal conditions (2) has to be
dropped.

3.5. Minimally Restricted Relevant Conditions of Consistency

We admit by hypothesis that the object denominated one micro­

system (S) does possess a continuously moving beable position and the
corresponding beable momentum. Statistically this leads to the as­

sumption, for any state vector t/J, of a corresponding joint probability
of beable position and momentum variables. We shall now charac­
terize this distribution so as to keep constantly faithful to the
minimality of the model of a micro system introduced by the mere
assumption of a continuously moving be able position, while ensuring
nevertheless a priori relevance to the reduction problem. Then, for

the sake of minimality, we start out with a joint probability P",(q', p')

where neither the position beable q' nor the momentum beable p' is
asserted to be observable.

Condition for the momentum

We examine first the momentum distribution f P",(q', p') dq' = P",(p')
because it seems less queer to admit that it is not observable, i.e. that
in general it is different from the quantum mechanical momentum
distribution: (fg>",(q,p')dq=g>",(p'»~leP(p)12 (<1> is the Fourier
transform of 1/1). For relevance to the reduction problem we have to
admit that an individual act of momentum measurement relates

the one preexisting beable momentum p / of the respective system,
to the observed value p. This leaves (in general) an active role to the
momentum measurement device D(p), in agreement with Bohr's

ideas: if A is a parameter characterizing the state of D(p), the
observed value p is a function P (p /, 1/1, A) of p /, 1/1 and A,
the form of this function (unknown) being fixed once t/J and a device
D(p) are given. Now, for any physically realizable 1/1 and inasmuch as

IiiI' l{uantum mechanical prediction leP(p W is true for t/J, we have to
assume that statistically pep', t/J, A) is obtained the number of times
(normalized) leP(p )12• This number can also be written P",(p')RD1P)(A)

where RD(plA) designates the statistical distribution of A over the
ensemble of the states of D(p) realized for the individual acts of
measurement which yield leP(pW, and where p', A are taken the same
as in the argument of pcP', t/J, A); indeed P",(p') and RD(p)(A) are
independent densities, since in every individual act of measurement
interaction p' preexists to the interaction, by hypothesis. The neces­
sity to label somehow the products P",(p')RD1PlA) in relation with the
ohserved values p, leads then to the mean condition

(In f f f pep', 1/1, A)P",(q', p', to)RD(p)(A) dq' dp' dA

= f f pep', 1/1, A)P",(p', to)RD(p)(A) dp' dA

= I p leP(p, toW dp = \ 1/1(q,to) IT a~ t/J(q, to»)'

WI.:. have written explicitly the constant time to elapsed since the state
'I' has been prepared for each individual S, when the corresponding
individual act of measurement interaction between D(p) and S be­

gins: thereby we emphasize that the numerical equality (17)1 does not
depend on the time evolution of the measurement interactions, neither
on their functional form nor on their duration; it depends exclusively on
thc connection between their result (second member) and circum­
stances which precede them (first member, to).

But, beyond the numerical aspects, it is important to understand
clearly the conceptual content of the integrand from the first member of
(In: while the values of the functional p (p', 1/1, A) are the observed
values p from f p I<p(p, toW dp, the functional form of p (p', tf;, A)
represents the hypothetical- individual and deterministic - process
which leads from one beable value p' possessed by the supposed
momentum beable of the system, at the time to when the measurement
interaction began, to the observed value p, defined at another time, by a.
coordinate attached to a macroscopic part or aspect ('pointer') of D(p).
The presence of the parameter A in the argument of p(p/, tf;, A) stresses
the assumption that this individual process depends - besides p' and
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(l7h I I I q(q', 1jJ,A)Pop(q', p', to)RD(q)(A) dq' dp' dA

= I I q(q', 1jJ,A)Pop(q', to)RD(q)(A) dp' dA

= (ljJ(q, to)lqljJ(q, to) = J IIjJ(q, toWq dq

(obvious notations). All the comments concerning (17h are transposable
for (l7h, We make no'w an important remark concerning (l7h:

In the first place, this mean condition for the position, in con­
tradistinction to the marginal condition (2a), leaves open the pos­
sibility that the beable position q' of one microsystem SlOP), lies
outside the support of 1jJ. However shocking it might seem, this
possibility cannot be excluded since the purely predictional formalism

IjJ- also on the state of D(p), throughout the time interval taken by the
measurement interaction. The definition of this state of D(p) introduces
a macroscopic potential (constant or nulL for p) which is different in
general from the macroscopic potentials having commanded the
Schr6dinger evolution of t}J from the moment from which IjJ has been
prepared until to when the act of measurement began. Thus the exact
meaning hypothetically assigned to p(p', 1jJ,A) is this: it represents one
individual member of a virtual statistical ensemble of p -measurement
evolutions, globally corresponding to the Schr6dinger evolution of the
state vector of the 'system + D(p)', during the p-measurement in­
teraction. We finally note that, for the sake of maximal generality, we
conceive that the functional form of pep', 1jJ,A) might depend upon the
particular D(p) device utilized. Two different devices D1(p) and Dz(p)
can be conceived to introduce in general two different functional forms
p(l\p', 1jJ,A) and p(Z\p', 1jJ,A) and two different distributions RDt(p)(Al)
and RD;,(piAz). But then a certain correspondence has to be also assumed
between pm, RDt(p) and between pCI, RD,(pJ>such that statistically, in a
given ljJ(q, to) prepared for each microsystem 5, both Dl(p) and Dz(p)
shall create any given observed value p, with the same relative
frequency 1c.P(p,to)lz.

Condition for the position
We require for the position the same type of consistency condition as
for the momentum, in order to conserve the minimality of the
demanded restrictions:
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ur quantum mechanics introduces no assertion whatever concerning
the way in which the only observationally described object S(W)

'exists' independently of observation. However (2a) subsists inside
(17)2 as a particular possibility. In consequence of Theorem 1, one
at least of the two marginal conditions (2a) and (2b) has to be
dropped, but not necessarily both. Since we have dropped the mar­
ginal condition for the momentum, we remain free for the moment to
assume that the marginal condition for the position is always true. But
it will appear that this apparently so natural assumption has a heavy
price, if all the quantum mechanical predictions are true.

The other mean conditions (macroscopic dynamical

quantities, quantum mechanical dynamical operators, beable

dynamical quantities)
For dynamical quantities more complex than q and p, most of the mean
conditions posed so far in connection with joint probability attempts­
and then criticized - have a structure which does not resist a closer

analysis. Given a macroscopic classical dynamical quantity f m(q, p), the
corresponding beable dynamical quantity of a microsystem StOP) is
usually conceived in a way which violates the minimality of the model of
a microsystem introduced by the mere hypothesis of a continuously
moving beable position: the beable which corresponds to fm(q, p) is
brutally identified with fm(q, p) and thereby the na'ive atomistic model,
made obsolete by de Broglie more than fifty years ago, is implicitly
reintroduced. Moreover, the fact that a measurement interaction in

general modifies the beable characteristics of a microsystem, therefrom

yielding an observed value, is not taken into account. Such unanalyzed
steps lead to mean condition of the type

I I fm(q,p)P.,(q,p)dq dp = (1jJIfm.QM( q,~ a:)IjJ),

(fm. QM is the quantum mechanical operator for f m), and then these are
found unsatisfactory, which indeed they are. Before .....going over to
locality analyses we shall express these criticisms more detailedly. This
will enable us to specify what mean conditions, for any quantity, can be
imposed upon a joint probability both minimally restricted and relevant.

We begin by recalling a well-known fact concerning the time
evolution conceivable for a joint probability of beable q', p'. Since



where the symbols q' and p' are pairwise connected precisely by the
kinematic relation p' = K(dq'/dt), while the time variation of p' is
equated, by application of the fundamental newtonian postulate, to a
convenient 'total force' F, classical or not,

(17)1 and (17h are required for P",(q', p') at any time. P", has to
perform a time evolution compatible with the Schrodinger evolution
of the corresponding t/J. This evolution admits a newtonian represen­
tation in consequence of the kinematic definition p' = K(dq'/dt) as­
sumed for each p'. Indeed - by definition - the time evolution of P", is
newtonian if it is describable by an equation of the form

(this force can be conservative, or dissipative, or a sum of a con­
servative term and of a dissipative term; only in the first case it is
derivable from a potential function, and then (18) acquires a hamil­
tonian form). Now, it is well established that, given the Schrodinger
evolution of t/J determined by some macroscopic potential Vm(q), it is
in general not possible to find a newtonian evolution (18) for an
attempted joint probability P"" if F in (19) is required a priori
identical with the macroscopic force Fm = -grad Vm(q): proofs of
this impossibility are contained implicitly, but rather obviously, in the
text-book studies of the WKB approximation as well as in Feynman's
path integral approach [3] or in de Broglie's and Bohm's hidden
variable attempts. Thus F in (18) has to be conceived as an
unknown non-macroscopic force which cannot be posed, but which
has to be determined consistently with the Schrodinger evolution of
0/, as a functional of Vm(q) via t/J(Vm(q». This functional would
probably yield the most specific descriptive element of a non-nai"ve
model of a microsystem.1 If, on the contrary, F in (18) is decreed to
be identical to Fm = -grad Vm(q), any hope for a joint probability
P",(q', p') performing a time evolution consistent with 0/ - for any
t/J - is thereby banished.

On the basis of this remark it will now be easy to understand that
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ap",(q', p') = p' ap",(q', p') + Fap",(q', p')
at K aq' ap) ,

dp' = F,
dt
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PROPOSITION 2. Given a macroscopic classical dynamical quantity
/",(1/. p). a corresponding beable classical dynamical quantity does not
necessarily exist: if it does exist. then it is in general different from
the corresponding fm(q. p). so that it cannot be found by reversing the
correspondence rule which led from fm(q, p) to the respective quan­

tum mechanical operator fQM(q, (f1/i)(alaq».
Proof. Again we produce an example. Consider the macroscopic

dynamical quantity total energy fm(q. p) = Hm(q. p) = p"12m + Vm(q).
Consider also one individual microsystem 51"'). What can be said
concerning a beable total energy of 51"')? With our previous as sump­
I ions 51"') possesses. a beable position and a corresponding beable
momentum p' = K(dq'/dt). One can then form for 51"') a kinetic
energy p '"I K (where K is not identical to the mass m of 51"'), a priori).
But in order to preserve for a joint probability P",(q', p') attempted
for 51"'), the possibility of a time evolution compatible with that of t/J.

the force F = dp'/dt which - by newtonian postulate - is equated to
dp'/dt, has to be in general different from the macroscopic force
[~,,(q) = -grad Vm(q), F'(q') ¥' F(q). If moreover F'(q') is not con­
servative, then 51"') simply does not possess abeable hamiltonian,
notwithstanding the fact that the time evolution of t/J is expressed by
a hamiltonian (operational) formalism [4]. If on the contrary F'(q')
also does derive from a potential, this potential V'(q') "" Vm(q) is in
general different from Vm(q); then 51"') does possess a be able hamil­
tonian Hh = P ,2/2K + V'(q') but this is different from the macroscopic
hamiltonian Hm = p2/2m + V(q) to which corresponds the hamiltonian
evolution operator for t/J: HQM = -(1i12m)(a2/aq2) + V(q). Replacement
in HQM of (lili)(a/aq) by p, and of the multiplicative operator V(q) by
the function V(q), yields back Hm but not Hh( "" Hm).

This example suffices for showing that mean conditions of the form

f f fm(q, p)P",(q, p) dq dp = (1/JIfm,QM(q,(Ii/i)(alaq»t/J).

are not significant. (In particular such a mean condition for the potential
energy itself

f f Vm(q)P",(q. p)dq dp = (t/J!Vm(q)t/J),
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where all the notations have obvious meanings by analogy with (17)1' All
the comments concerning (17)1 can be transposed to (17), which includes
now (17)1 and (l7h, We can rewrite (17) in a form more specifically
connected with the dynamical observable w: Given one SloP) we denote
globally by a unique parameter w' all the beable characteristics of SloP)

which contribute, with !/J and A, to the creation of the observed value w

when one act of w-measurement is performed on S(oPl. These charac­
teristics can be conceived as defined at q' since q' designates the beable
element of SloP)to which a beable dynamics is assigned. Then statistically
the joint distribution PoP(q', p', to) defines a corresponding joint dis­
tribution IIoP(w',q',to). Rewriting of w(q',p',!/J,A) in function of w'

is the very definition of a na'ive. atomistic postulate on the structure
of the microreality), Poll and t]J cannot be purely algorismically treated
as if they were both fit for relevantly calculating means of any and
same functions. Poll can yield relevant means for beable values only
while !/J is relevant for calculating means of observed values only.
Park and Margenau have explicitly contested - on logical grounds­
the relevance of mean conditions written with the macroscopic func­
tions f m (q, P )[5]; Proposition 2 ,gives a more physical reason of this
irrelevance. But obviously there exists a much more radical objection:

given a quantum mechanical operator fm,QM corresponding to the
macroscopic dynamical quantity fm, even if the -respective beable
quantity botb does exist and is distinguished from fm, not its mean value
is relevant to the reduction problem, but the mean engendered by it via

the measurement interactions. which depend also on the measurement
device. Bohr's views on measurement were very profound, each act of
measurement modifies preexisting characteristics of the system, bring­
ing out from it observed values of ot/ler, only operationally defined
'quantities of the system'.

Then all that can be required of a joint probability P ",(q', pi) of beable
q', pi is to have an analytic expression such as to be compatible with
mean conditions of the type (17)1 and (17h, for any quantum mechanical
dynamical observable w, at any time, i.e.

f f f w(q, p,!/J, A)P",(q', pi, lo)RD(w)(A) dq' dp' dA

= (!/J(q, to)!fQM,,., (q,~ a:) !/J(q, to)) = f wIC"'(w, to)12 dw,
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yields a function of a new functional form w( Wi, !/J, A) but the values of
which continue to be the observed values w, and for which all the
considerations made for the particular case of p (p', t]J. A) from (17)\ are
valid, So (17) becomes

(17)' I I I w(w',!/J. A)II",(q', w', to)RD1w)(A) dq' dw' dA

=: (!/J(q, to)lfQM,,.,!/J(q, to) =: I wIC"'(w, to)12 dw.

The critical remarks which led to condition (17)' show that all the
theorems of impossibility (like that of von Neumann concerning
simultaneous measurements of quantities with non-commuting quan­
tum mechanical operators ([16], pp. 255-230), or that of Kochen and

Specker [7], as well as all the investigations on joint probabilities based
on correspondence rules with the quantum mechanical operators

(MoyaI[8], Bass [9], Cohen [10])) must be carefully reconsidered. Indeed:
If the quantum mechanical operators of two quantum mechanical

dynamical observables w\ and W2 do not commute, this expresses - by
definition - the fact that the quantum mechanical measurement proces­

ses yielding the quantum mechanical operational definitions for w\ and
IV2, cannot be realized simultaneously in one individual act of measure­
ment. Hence, when one examines the question of the "simultaneous
measurability of two observables w\ and W2 associated with two
nOll-commuting quantum mechanical operators", ipso facto a non­

4uantum-mechanical operational definition is noW envisaged for at least
one of these two quantities, namely a definition such that, now, the two
measurement processes conceived shall 'commute' (shall be simul­
taneously realizable in one individual act of measurement), In other
terms, this problem cannot concern the same initial pair of observables

WI' w2; it can only concern another pair, where at least one member is
changed. This does not at all mean that the problem is absurd. Nothing
hinders the conception that one given beable property w' assigned to a

system can be connected with observable facts via several different
operational definitions. But there is no reason then to expect for such
different operational definitions the same statistical distribution of
ohserved results; different observed statistical distributions have to be

expected for them. in general. All these observable distributions are
equally acceptable for 'describing' the unique intrinsic distribution of



J J J w(w', 1/1,A)II4>jw(q', w', to)RD(w)(A) dq' dw' dA

= (<pjw(w, to) I IQM.w<Pjw(q, to» = Wj

(Wj is the eigenvalue corresponding to <Pi ••.. of the quantum mechanical
operator I QM.w)' It simply is not physics to impose upon the w( w', 1/1,A) a
priori formal constraints. The relevant constraints have to be deduced

by means of very analyzed physical criteria brought forth by an
improved insight in the joint probability problem. We believe that such
an insight can.not be obtained as long as only surface probabilistic

relations, connecting probability measures alone, are stated explicitly,
while the corresponding relations between the events concerned by
these measures are left more or less in the dark. All the various

probability spaces which intervene - quantum mechanical probability

values supposed for the beable quantity w' assigned to the studied
system. under the sole condition that each one of the observable

distributions be related in some definite - even though specific - way
with this unique intrinsic distribution. These considerations entail that
when the question of simultaneous measurability is examined, one at
least of the two w(w', 1/1, A) functionals intervening, describes an
individual measurement evolution that is somehow 110t compatible with
the quantum mechanical operator for w. There is then no reason

whatever to require the equality (17)' when such a w( w', 1/1, A) acts (as
Park and Margenau[5] did, as well as von Neumann[6]). Furthermore,
there is no reason whatever either for subjecting the functional forms
w( w', 1/1, A) from (17)' to structural correspondence rules with the
quantum mechanical operators associated to the w-quantities, nor for
requiring for these functionals an algebra identical to that of the

quantum mechanical operators. The w(w', 1/1, A) from (17)' represent
processes, and these, moreover, are posed to be individual: this is the
essential feature of any attempt of a 'causal' solution to the reduction
problem. Whereas any quantum mechanical w-operator is defined in
direct formal connection with the function Im.w describing the classical
macroscopic w-quantity; this operator, moreover, is in a one-to-one
relation with a whole family of eigenvectors <Pjw,to each one of which a
joint probability attempt assigns already a statistical significance, as it
can be seen for instance by writing (17)' for a <pjw and by comparing the
contents of the two members:

spaces and joint probability spaces - have to be studied in their entirety
and with their interplay at all the levels ('conditions' defining the

'cxperiment', elementary events brought forth, field on these, measure
on the field). in order to acquire a precise and complete perception of the
deep structure of the joint probability problem [12].
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3.6. Generalization to Any Relevant Hidden Distribution

The 'dynamical' observables associated to S correspond - by their
operators IQM(q,li/i(a/aq» - to the classical dynamical quantities,
which are all defined as functions f(q. p) of the position and the
momentum. Therefore the concept of a joint probability P",(q', p') of a

beable position and a beable momentum variable seems a 'natural'
concept for expressing the consistency condition (17), to be required for
the quantum mechanical 'dynamical' observables associated to S. This
joint probability concept, however, cannot yield a direct representation
of the 'field-like' beable properties tentatively conceivable for a

microsystem; it reflects such properties only indirectly, via the non­
classical forces necessary (in general) in the time-evolution law (18), if
one wants to preserve the possibility of some compatibility with the
Schr6dinger evolution of 1/1 (pp. 125-128). Therefore the joint probability
concept P",(q', p') is not appropriate for expressing a consistency
condition concerning the quantum mechanical observables of S to
which no classical function I( q, p) corresponds (charge, spin component

on a given direction). Indeed, for such an observable it would be a priori
restrictive to pose that the beable properties w' of S which lead to the
observed values w (via the process w( w', 1/1, A)) are defined at q', as it
has been assumed for the dynamical quantities considered in (17).
Therefore we generalize (17) and (17)' by making use of a hidden
distribution P",(p:) instead of the joint probability P",(q', p'), and of a
functional w(J-L',1/1, A) instead of w(q', p', 1/1,A), J-L' being a generalized
hidden variable which designates globally any sort of beable properties

assigned to S and conceived to lead to the observed value w via the
interaction process described by w(J-L', 1/1,A):

(17)" J J w(J-L', 1/1,A)P",(J-L', to)Rv(w)(A) dJ-L' dA =

= (I/I(q, to)1\VQMI/I(q, to» = f we'" (w, to) d w
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(WQ.\1 in the second member is the quantum mechanical operator of the

observable w, connected or not with a classical function f(q, p )). Thus
(17)" englobes now (17) and (17)': we have finally obtained a condition
applying to any hidden distribution - a joint probability. or some other
distribution - which is both minimally restricted and still relevant to thereduction problem.

3.7. Methodological Attitude Concerning the Consistency
Condition (17)"

We want to stress a methodological attitude to which we attach a
fundamental importance: we assign to the condition (17)" a symmetric
role with respect to quantum mechanics and with respect to a hidden
variable attempt, we do not subordinate inconditionally the hidden
variable attempts to quantum mechanics.

The conditions of consistency attempted so far have all presup­
posed the exceptionless validity of the quantum mechanical predic­
tions, at least in the domain of atomic dimensions and newtonian
energies. However the fact that a hamiltonian operator can be written
does not ensure the physical realizability of its potential term, neither
that, a fortiori, of the corresponding Schrodinger time evolution-law.
If now a physically realizable potential and the corresponding evolu­

tion-law are considered, the mathematically possible i/J-solutions do
not all correspond to physically realizable boundary conditions. And

if a physically realizable i/J is considered. very paradoxically, the
quantum mechanical 'observables' of the system do not all possess a
unanimously admitted and physically realizable operational definition.
so that the corresponding prediction is not always verifiable (the most
striking example of this sort concerns the fundamental 'observable'

momentum: in a state i/J which is not an eigenstate of the momentum,
according to the orthodox theory of measurement a rigorous
measurement of the momentum for i/J(t) yields the observed results at
[' such that (t' - t) - 00 (time of flight method)). Finally if one con­
siders a physically realizable i/J and an observable for which an

admitted operational definition does exist and the results of its ap­
plication are observable, then the corresponding quantum mechanical
prediction might never have been verified.2 But a priori restrictions
corresponding to unrealizable, or to non-verifiable, or to non-verified
features of the quantum mechanical description, are likely to introduce

I

1:1

I

II

III

III
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fatal malformations into a joint probability attempt. For these reasons,
while requiring the conditions (17)', we have no rigid preconception.
Even these minimally restricted conditions of consistency are deman­
ded only for physically realizable state vectors and we shall keep in mind
the two important problems of the verifiability and of the verification of
the involved quantum mechanical predictions. In this way, while
quantum mechanics imposes restrictions upon the acceptable joint
probability, this, in its turn, can play the role of a test concept concerning
the quantum mechanical description. This attitude is novel and it is
characteristic of our approach.3.4

3.8. One-System Non-Locality

Joint probability framework
We place ourselves inside the Jomt probability framework, which
afterwards we shall leave. The joint probability defined by the minimal
condition (17)' might seem a very weak concept, unable to lead to any
definite conclusion for some problem. But we shall now show that in fact
this minimally restricted, while still relevant, concept of a joint
probability is strong enough for entailing a problem of physical
non-locality inside the one-system formalism of quantum mechanics.

Preliminaries. We make first two remarks:

(1) According to quantum mechanics, if a microsystem S is at some
time t in a superposition state i/Jab = ai/Jl + bi/J2' whose support I in the
physical space is a non-connected union I = II U 12 of two spatially
disjoint intervals I), IiII n 12= 0), then it is possible to prepare the state
i/JI for S, out of the state i/Jab' namely by suppressing at [ on 12- with the
help of an obturator or filter acting on 12- the characteristics of S
described by the term bi/J2 of i/Jab. Indeed, if .::1tpr = (tpr - t) is the time
taken by the action of the filter or obturator ('preparation' time), from
tpr == t + .::1tpr on, the state vector to be assigned to S is i/JI alone,
renormalized to unity. This type of preparation is particularly in­
teresting from our viewpoint because it asserts a relation between a
physical- but not observational - operation, carried out with the help of
a macroscopic device at the location (namely [2) of a descriptive element
(namely bi/J2), and a certain physical modification of the 'state' assigned
to the object designated by S, possibly entailing changes in the beable
properties assumed for this object. Even though the quantum theory
asserts nothing whatsoever concerning the location in the physical
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space, outside the periods of observation, of the objects described by
this theory. the possibility of a preparation of the type specified above
might contain some implications as to where this object can 'exist'
outside the periods of observation. according to a joint probability

theory fulfilling conditions of consistency with quantum mechanics.
(2) As we have already pointed out, the quantum mechanical

momentum observable has a peculiar operational definition. namely the
time-of-flight method. According to this definition the measurement
begins at a moment to by the suppression of all external fields, if they
existed, while the interaction with a material registering device D(p)

(which yields. directly, a position value) is relevant only if it occurs at
another time t, such that t - to = ~t(p) - 00. The complete measurement
interaction consists here of the passage of the infinite period ~t(p) + the
final registering interaction with D(p). Now, the infinite value thus
required for ~t(p) introduces ambiguities at the level of a joint
probability theory: in the first place, it rules out a rigorous verifiability of
the quantum mechanical prediction for the momentum spectra.
Moreover. not even an approximate verification of this prediction seems
ever to have been made effectively for the various types of preparable
states 1/1 (in particular for the superposition states I/Iab = a 1/11+ bl/l~ with
non-connected support, or with connected support (interference)).
Therefore, faithful to the agnostic attitude we choose. we reserve our
opinion as to the circumstances in which the consistency condition (17),
concerning the momentum has to be required. In the second place, in the
case of a free Schrodinger evolution of 1/1. the quantum mechanical
operational definition of the momentum observable permits a degenerate

relation between the observable p-spectrum asserted by quantum
mechanics and the instantaneous structure of the hypothetic beable
distribution of a hidden momentum Pw(p') = J Pw(q', p') dq'. cor­
responding to the joint probability measure from (17) I, Indeed the
quantum mechanical p -spectrum is an invariant of a free Schrodinger
evolution. Then the whole family of different instantaneous structures
taken on by Pw(q'. p', to) from the left member of (17), when time
translations change the to considered. correspond to one same quantum
mechanical p-spectrum in the right member of (17)). if 1/1 has a free
Schrodinger evolution. However. as soon as the be able properties
assigned to the object 5 are different from those of a material point
(which seems rather unavoidable. as the remarks on pp. 125-128 show).
the beable momentum distribution Pw(p') = J Pob(q', p' = K dq'/d/) dq'

can - in general- change during a free evolution of 1/1, in consequence of
the kinematic definition p' = K(dq'/dt) of the beable momentum. Once
more an illustration is yielded by the superposition states. namely those
which, like w(q. t) = (1/\!2)<pp (q) + (1/\/2.)<pp (q) from the proof of

, 1

Theorem I (pp. 120-122) take on successively. during their Schrodinger
evolution, a connected support first. and then a non-connected support
(or vice versa) [131. The preceding remarks apply as well to any function
of the momentum alone. But consider now quantities II! not depending
on the momentum alone (kinetic momentum, projections of the kinetic
momentum. total energy). The quantum mechanical operational delini­
tions of such quantities consist of procedures where the time at which
the interaction itself between one S"V) and a material device D( IV) begins.

coincides with the time to from (17)' at which what is called 'measure­
ment' as a whole begins. Moreover, the duration ~l(IV) required in
principle for such a measurement is not infinite. The preceding remarks
concerning the quantities depending on the momentum alone do not
apply to these other quantities. We shall now show that:

THEOREM 2. If it is assumed that the be able properties assigned at a

time t to the object denominated one system Slob) cannot lie outside the
support in the physical space of the quantum mechanical state vector
I/I(t) associated to Slob', then even the minimally restricted joint
probability concept from (17)' is unable to ensure a local deterministic
solution to the reduction problem, for any state vector and any
dynamical observable.

This theorem will be proved by giving an example. Our choices for an
example are the following ones:

For the reasons given in the preliminary remarks (b) we consider a

quantity w of which the quantum mechanical operational definition
involves a finite measurement interaction time

(20) ~t(w)<::c.

Furthermore, at some initial time tj• we consider the three state

vectors 1/11.1/12' I/Iab = al/ll + bl/l2 such that the supports in the physical
space, II and 12, of - respectively -1/1, and 1/12, are disjoint. The distance
d,~ separating the two nearest points of 1\ and 12 is subject to a condition.
namely: we denote by ~tpr the time-interval necessary for preparing for
5 the state described by 1/1, out of the state described by I/Iab, by the
method mentioned in remark (a) (i.e .• ~tpr is the time-interval. finite,
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taken by an obturator or a filter for suppressing on 12 the characteristics
of 5 described in ljJub by the term bljJ!). The moments tj < to < tare
chosen such that .1tpr = to - ti . .1t{ w) = t - to. We denote .1tpr +.1t( w) =
.1t and we require

(21) dI2>C.1t,

where c designates the velocity of light.
With these choices we can now develop the proof of Theorem 2. We

shall first show that

LEMMA. The product wITab intervening in the integrand from the first
member of the condition (17)' written for ljJab' has a mathematically

non-local dependence on ljJab'

Proof. The condition (17)' written for ljJab' 1jJ1' IjJl' yields (with obvious
notations)

(22) I I I w( w', ljJab, A )ITab (q', w', to)RDcw)(A) dq' d w' dA

= (lfiab(q. to)lfQ.w .••.ljJab(q. to) = lal2 J wIC(1)(IV)j2dw

+ Ibl1J wIC(2)(w)lz dw + a*b J w(C(!)(W»*C(2)(W) dw

+ ab* J w(Cm(w»*C(1'(w) dw.

(23) I I I W(W',!/J1o A)n(q', w', to)RD(w)(A) dq' dlV' dA

= (1jJ1(q, toW QM.••.IfiI(q. to» = J wC(1)( w)12 dw,

(24) I I I w(w', 1fi2, A)llz(q', w', to)RD(w)(A) dq' dw' dA

= (i/J2(q, to)lfQM .••.1fi2(q, to» = J wlcCZ)(w)IZ dw,

Let us admit tentatively the hypothesis conditionally contained in the
formulation of Theorem 2, namely

(h) the beable properties assigned at a time t to what is named one

system 510111 cannot lie outside the support of !/J(q, t\ in the physic:!l
space.

Consider now the product WIT"h from the left member of (22), The

hypothesis (h) entails that this product is null outside the support
/ = II U I! of ljJ"b(q. to)' because the probability measure IT,'b(q'· w'. to) is
null for 'I' ~ L Then the non~connected structure chosen for / = IIU I:.
(namely [I n /2 = 0) entails that the product WIT"h from (22) is a sum of
two terms

(25) w(w', I/I"b' A)ITubU/'. w'. to) = w(W'.!/J"b' A)IT"b.T,(q'· w', to)

+ w( w'. !/Jub' A )IT"h.l,(q'. w', to).

(obvious notations) of which one is null for any given 'I', since one 5(",,,·1

possesses one beable 'position' property, so that either q' E II and then
'I' ~ 12• or vice versa. However, confrontation of (25) with (22), (23). (24)
shows that in general

W(W'.lfiab' A )ITub.I,(q', w', to) ~ W(W'.!/JI' A)ITI(q', w'. to),

w(w', !/Jub' A)ITab.I!(q', w'. to) -#- W(w', 1/12'A)ITiq'· W', to).

because the sum of the two last 'interference' terms in the second
member of (22) is not null for any !/JI.I/I:., a. b. and w. It is null for the

particular case w = g(q) (because of [In Iz = 0) so that for these
quantities the non-equalities (26) transform into equalities. But for
IV-#- g(q) the term wITah.I, from (25) depends - as the first non-equality
(26) shows _ on the whole superposition state vector lfiab = aljJl + bljJ:..

even though this term is defined on II alone and even though IIn 12 = 0.
the distance d12 which separates II from 12 being moreover arbitrarily

big. as (21) permits. The symmetric argument holds for the term WITub.l,

from (25). In this sense the product W(!/Jab)ITab from (22) has a
mathematically non-local dependence on I/Iab' q.e.d. The lemma proved

above generalizes to any relevant joint probability from (17)' the
mathematical non-locality of Wigner's joint probability (1) (expressed

by (II), (12). (13».
But w(w',!/J. A) designates a process. which, in addition, takes a

non-null time-interval.1t(w). Therefore, in order to investigate whether
or not the mathematical non-locality brought into evidence above does

involve physically non-local phenomena, time has to be taken into
account also. This is what one shall do now:

The hypothesis (h) has a rather obvious consequence. namely:
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(c) Given one system S to which a quantum mechanical state vector
I/;(t) is associated at the time t, throughout any local process which

involves the system S during a period dt = t'- t, the transforms by this
process of the beable properties assigned to S at the initial time t, remain
confined inside the portion corresponding to dt of the light-cone of the

support I of I/;(t). (This formulation holds with respect to any given
space-time referential and, whether or no, from t on the quantum theory
continues to associate an individualized state vector with S.)

Consider then a statistical ensemble of systems S for each one of
which, at the constant time tj after the preparation of I/;ab, the new state
1/;1 is prepared out of I/;ab,and then a w-measurement is performed on
S(I/;I) (the choices (20), (21) being fulfiJled): Under these conditions, if

the consistency relation (22) for I/;ab is satisfied, then the condition (23)
for 1/;1 is violated, unless some non-local effects take place. Indeed:

The consequence (c) of (h) together with (20) and (21) entail that

throughout the time-interval dt = dtpr + dt( w) taken by the global
process [preparation for S of the state described by 1/;1 out of the state
described by I/;ab+ w-measurement on S'oV1)] the transforms by this
process of the beable properties assigned to S at tj remain confined
inside two disjoint and space-like separated space-time domains. But
according to (26) the consistency condition (23) for 1/;1 can be fulfiJled

only if the product w(l/;ab)IIab.1, changes into the different product
w(I/;I)II!. This is a required statistical change, but it can come about only
if individually the beable properties realized for each S(,pao!on II at tj,

undergo during dt a transformation different _ in general- from the
transformation that would have taken place if the state of that S would
have continued throughout dt to be described by I/;ab(i.e. in absence of
the action on 12of an obturator or filter). In other words, each one action

of preparation of a state 1/;1 out of a state I/;abfor one S, even though it
takes place on 12, must - in general- somehow cause a change, and
during dt, of the individual properties of that S on II' Now, if such a
change does indeed happen, it can be only non-local, since the portions
corresponding to dt of the light cones of II and of 12 are two space-like
separated space-time domains. While, if the specified change does not
happen, (23) for 1/;1 cannot be fulfiJled, in consequence of the first
non-equality (26). This example suffices for proving Theorem 2.

Quite independently of any experimental investigation which it might
suggest, this conclusion is a theoretical fact.

General hidden variables framework. Theorem 2 can be generalized

for any hidden distribution fulfilling the minimal condition (17)", and for
any observable, as we have shown elsewhere [14]. Thus, when grasped
synthetically, the conceptual situation is this: N a hidden variable
distribution can ensure a local deterministic solution to the reduction

problem, if the object denominated 'one microsystem' cannot 'exist'
outside the support in the physical space of the quantum mechanical
state vector associated to it. Thus we have been led to a direct

confrontation between the one-system quantum mechanics, causality,
relativity, and the question where the object named 'one microsystem'
does 'exist'. The concept of hidden variables has played the role of a
revelator of this confrontation. This shows the methodological force of
the hidden variables concept.

3.9. Comparison with T~'v'o-System Non-Locality

In the one-system locality theorem proved above, the question of the
relation between the beable location of'S' in the physical space and the
support of the quantum mechanical state vector of'S', plays an essential
role; while J. S. Bell, who discovered the locality problem [2], has
brought forth, with the help of his well-known two-system example, a
pure and striking confrontation between quantum mechanical predic­
tions, causality and relativity, where no explicit use is made of the
question mentioned. In this connection we want to make two remarks.

In the first place: when'S' designates 'one system' only one mark on a
measurement device can be registered for each'S'. This is what
necessitates the explicit introduction of the hypothesis (h) in the
demonstrations on one-system non-locality. However, if not a demon­
stration, a one-system alternative for experimental investigation on
locality can be formulated without use of (h). Indeed, one can obtain a
conclusion by exclusively taking into account the space-time coor­
dinates of macroscopic events, namely the action of an obturator and
the registration of a mark on a measurement device: even though
quantum mechanics does not predict where and when a mark will be
registered, a posteriori this mark is always found with some definite
space-time coordinates. If, for each individual registration, these
coordinates are found to be separated space-like from those of the
action of the obturator (following the conditions of the proof of
Theorem 2) and if, nevertheless, statistically, the quantum mechanical
distribution for 1/;1 is found when the obturator is used, while, when not,

....__ ~~. L.~ ~"==--"'"
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the distribution predicted for l/1ah is found. then there is non-locality.
In the second place: when it is tried to define the significance to be

assigned to the various possible results of the experiments for verifying
Belt's inequality, the question of where the object named a 'two system'
does beably 'exist' comes into play irrepressibly. raising novel and
fundamental problems [15J, even though it is absent from Bell's demon­
stration. at least explicitly. (Implicitly it must somehow intervene. since
the location of the two registering devices used is not chosen in­

dependently of the maxima of the presence probability for the two
'parts' of .S', calculated with the help of the state vector of'S',)

From these remarks we conclude that the question of the relation

between the beable location of .S' in the physical space and the support
of the quantum mechanical state vector of'S' plays in fact an essential
role in any locality problem. no matter whether' S' designates 'one
system' or 'two systems' and notwithstanding the formal descriptive
differences.

In this perspective, the explicit presence of this question in the
one-system demonstration appears as a specific and interesting feature.
drawing particular attention to the relations between reality and the
descriptive language of quantum mechanics.

3.10. Experimental Study

Theorem 2 and its generalization suggest an experimental study which
we shall now indicate.

, / ~,V;",fJ' , D[w'

, ,'" "I~;)~'
, ' iJ\.. '

a ,,' d12 \_.~', .d-L \
,i it;

, ' I'/ ./ [G
/~:\ 'VJ

IItJ t

Preparations (Figure I). A non-monochromatic and low intensity
intermittent source u emits microsystems S At a distance d from (T is
placed a spherical screen S, of radius d. centred on u, Two circular
windows WI and W2 are cut out of S. The distance dl2 which separates
the centres of WI' W2 can be chosen arbitrarily big by increasing d. At
the right of S the windows WI. W, are continued by widening walls
playing the role of guides CI, C2 (Figure 1). In these conditions each
individual system S emitted by U' is described by quantum mechanics.
at the left of S, by a spherical wave packet tj;', the front of which
reaches at some given moment t. simultaneously, both windows \VI,
W2, From that moment on. at the right of S quantum mechanics
describes the considered one system S by the superposition tj; =
(ItV'2)tj;1 + (Itv'2)tj;2 of the two packets tj;1and tj;2 transmitted respec­
tively by the two windows WI and W2, Because of the guides C1• C,
the supports II. I2 of tj;1. tj;2' are finite, disjoint. and separated by the
arbitrary distance dl2, Thus at the right of S one has prepared a
superposition state of the type utilized in the proofs of Theorem 2,

The state tj;1 can be prepared out of tj; = (I!V2)tj;1 + (I/V2)tj;> by
introducing an absorbing wall inside the guide C,. at some distance S
at the right of the surface (virtual) of the window W2 (Figure I), The
state tj;2can be prepared similarly.

First stage of experiment: verification of the quantum mechwzical
predictions for IV, tj;1otj;2and tj;. The distribution (and mean value) of
w is measured separately in tj; (WI' W2 both open), tj;\ (W2 constantly
shut) and tj;2(WI constantly shut). The results are compared in order
to see whether the quantum mechanical non-additivity of the w­

spectrum in tj;. with respect to the w-spectra in tj;1and tj;2. is true or
not. The problem, in this stage, is to define the theoretical conditions
of observability of the sum of the 'interference terms' from the right
side of (22) (interference in the w-space, even though in thc physical
space tj;1' 1/12 have disjoint supports), and to deflnc a proU:dllll: whiL'i1
insures an w-resolution permitting thc rcgistralioll of Ihe lI'-illl<:l
ference distribution, if it really cxists. If ill sllch apl'l lip I ial,' ('1111

ditions the predicted intcrfercncc lI'-distliIHlli,\j1 j" 1111' 1"/',I,.lt'll:d, IIII'
quantum mechanical predictioll 1'1'11111 till" I iV,lat',i,It- III (,~,~)i:. 11111 1111,'

so that the non-locality Thcol!'lIl" j" 11111 lilli' l'IIIaI'I. ',II thai a 1'IIIIhn

stage of locality iIlVC',lif~alillll" i', il/I'I"VIIII\. II 1111 III\' ,'''lIllal'Y' 1111:

w-intcrferclllT ten II i:. '''I',,'/vl'd, II,,' I'IIIIIWIIIU '0111/:" I:, It:I,'Villll:
Sccond .I'lil!:/" l"I'illlll' ill"I·II/H,III"". IIII! \;111'11 ',Y'ilCIII ,"'; cillitted
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by IJ the superposition state W is first prepared (WI' W2 both open).
Then the preparation of WI out of W is started at a moment tj by help of an
absorbing shutter A dropped inside the guide O2, at a distance a from the
surface of the window W2• An w-measuring device D( 11') is placed inside
the guide 01 at a distance a' = a + E from the surface of the window WI'
E being very small but sufficient for ensuring that when the front of the
wave of the system reaches the level a + E the preparation of WI has

already been accomplished (the term (frV?')W2 of W has been sup­
pressed) so that it is the wave-packet WI which reaches the w-measuring
device O( 11'). The condition

is required. where V"" is the group velocity for WI (depending on the
mean energy chosen for the systems emitted by IJ) • .1t and c being
defined by (21). The device 0(11') and the absorbing shutter A are each
time set in action simultaneously and 0(11') is each time disconnected
after a time inferior to d 12/ c. If by repetition of this procedure the
recorded w-distribution is identical with that found for WI alone in the
first stage of experiment (i.e. if the w-interference term, supposed to
have been previously found for W. is suppressed by the action of the
shutter A) then it has to be concluded that either non-local effects have
gone from II to 12• or the object named one microsystem S somehow is
not confined on the support of the quantum mechanical state vector
associated with its state. The problem to be solved for this stage is to
realize the condition (21)' while furthermore ensuring, as in the first
stage. conditions of observability of w-interference fringes (in the
w-space ).

Any observable w for which (20) is fulfilled can be envisaged.
spin-components included. Upon a more detailed analysis the spin­
component along the direction perpendicular on d 12 might appear to be
the most convenient choice. For the moment. however. we reserve our

opinion concerning both the choice of II' and that of the measurement
procedure. If these choices raise questions and seem queer, this is a
reflection from the queerness of the quantum mechanical theory of
measurement. We believe that this queerness should not be allowed to
act as an obstacle to any attempt of verifying the concepts and
predictions of the orthodox theory of measurement.
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4. REMARK S 0:--1 TH E SU P ER POSITION STATES

Throughout the preceding study, the superposition states have played
an essential role which draws attention on them.

There exists a tendency for confounding the superposition states
with the mathematical decompositions permitted by the expansion
postulate. This tendency has its source in the fact that the quantum
mechanical formalism prescribes the same algorism for the cal­
culation of predictions concerning a superposition state or concerning
a mathematical expansion. However, quantum mechanics does
distinguish - by their definitions - the superposition states from the
mathematical decompositions. When this distinction is explicitly
taken into account and then confronted with the identity of the
algorisms prescribed for calculating the predictions, reasons appear
for doubting the truth of certain predictions concerning superposition
states. Indeed:

A quantum mechanical state vector W is defined at any time by the
specification of boundary conditions B which determine an 'initial'
form w(q, to), and of an evolution operator H which determines the
transform of w(q, to) by the passage of time. We shall then write
symbolically I/J = w(B, H). The physical realization of both Band H

is necessary for the physical realization of w(B, H).

Let us now adopt the Schrodinger representation:
In a superposition state W = aWl + bW2, the boundary conditions are

different for W, W\o W2, while H can be the same, or not. To take an

example, we suppose that H is the same. Then we write w(B 1+

B2, H) = aWI(BI, H) + bW2(B2' H). with a. b complex constants and W.

WI. 1/J2 having a time evolution corresponding to H. When WI' W2

'interfere' in the physical space or in some other w-space. this
interference concerns two different states both realized simultaneously.

Consider now a mathematical decomposition of a state W. according

to the eigenstates 4>Q;of a dynamical quantity Q. W = :£;cr4>Q;, such as is
permitted by the expansion postulate. Boundary conditions B and a

hamiltonian H are realized only for W. The 4>Q;are constant vectors and
the ct are complex numbers depending on Band H via the definition

crUo) =J WUO)4>Qi dq, ct(t) = J w(t)4>Q, dq.

Then we have to write w(B, H) = :£ict(B, H)4>Qi' Here only W IS
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5. CONCLUSION

applied indistinctly to the superposItIOn IjJ(B i + B2. H) =
aljJi(BI• H) + bIjJ2(B2• H) or to the expansion IjJ(B. H) = Ii et(B. H)cf>Qi'

this might involve erroneous identifications of statistics' of real
interactions between physically realized states, with mathematical
interferences of standard states. conceived but not physically real­

ized. Therefore we envisage that the superposition principle might

introduce certain false predictions.

physically realized. while on the right side of the equality IjJ(B. H) is
represented in terms of the standard state vectors. cf>Q;conceived. but

not realized physically.

When the probability law for some quantity Q' #- Q is calculated by
the same algorism

IJ IjJcf>Q;dql2 = IJ (aljJi + bIjJ2)cf>Qidql2

We have shown that Wigner's proof does not invalidate the concept
of a joint probability of the position and the momentum variables. but
raises instead a locality problem inside the one-system formalism of
quantum mechanics.

In a critical research it might be illuminating to examine in detail a
counter-example to a general assertion, instead of using it merely as a
sufficient basis for the global rejection of this assertion. In con­
structive attempts the aim is the perception of some maximally
unifying essence. and the choice of the maximal generality in the
formulations ensures indeed a progression towards this aim. But in a
critical attempt, on the contrary. the progress often lies in the iden­
tification of some particular circumstance of which a previous con­
structive effort has remained unaware. and which has therefore been

erroneously forced into a conceptual structure imperfectly fitted for
it, where its presence introduces distortions. Thus. in the present
case, the connections established between the one-system locality

problem and the particular type of state vectors for which this prob­
lem arises, suggest that the quantum theory might have erroneously
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integrated the description of momentum-dcrcndcnt dislributiolls. for
these particular states. While the study of the position distribution for
states IjJ = aljJl + bljJ2 with II n I2 '" 0 has contributed to lead towards
quantum mechanics. the study of the momentum- or spin-dependent
distributions for the states t/J = aljJl + b~/2 - with II n I2 = 0or II n 12'" 0­
might contribute to lead beyond the bounds of quantum mechanics.
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