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The relations between quantum probabilities, Kolmogorov probabilities, and
informational probabilities are studied against the background offered by the
concept of a quantum mechanical probability tree built in previous work. It is
shown that the quantum mechanical transformation theory goes beyond the
Kolmogorov concept of probabilities. It is furthermore shown that the quantum
mechanical concept of probability is of the same essence as the informational
one. The analyses that produce these conclusions bring forth the first lines of a
general mathematical representation of the emergence and circulation of pat
terns of any kind.

I. INTRODUCTION

Many authors, starting with Mackey (1963), have perceived that the
lJuantum mechanical concept of probability has specifics that distinguish
il from the Kolmogorovian one. In particular, detailed mathematical
characterizations of such specifics have been given in recent work by Accardi
(19H3), Gudder and Zanghi (1984), Pitowski (1989), and Beltrametti and
Maczynski (1991). In what follows I give another sort of characterization,
basically semantic, where, starting from the quantum mechanical transfor
lIIalion theory, quantum probabilities are compared to both Kolmogorov
probabilities and the theory of information.

In previous work (Mugur-Schachter, 1991, 1992a,b, 1993) I have
sludied the space-time organization of quantum probabilities. I have shown
Ihal Ihis organization brings in centrally a certain type of treelike structure
Ihal I have called the "probability tree of a state preparation." Here, after
a brief introduction to this new concept, I first show that it permits one to
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measures and events quoted before (Accardi, 1983; Gudder and Zanghi,
1984; Pitowski, 1989; Beltrametti and Maczynski, 1991). Such ambiguities,
however, can also be attacked from an a priori viewpoint, genetical1y, from
beneath, by the physical study of the random phenomena. It can be hoped
that the results obtained along these opposed directions will merge into a
more complete and controlled view.

To begin with, in what fol1ows the random phenomenon that produces
the universe of elementary events from a considered probability space,
quite systematical1y, will be explicitly symbolized. We shal1 indicate it by a
pair (P, U), where P designates an "identically" reproducible procedure,
each one realization of which brings forth one elementary event ei E U, in
general variable from one realization of P to another one, notwithstanding
the supposed identity of the reiterations, whereby, randomly, there emerges
the whole universe U. Furthermore, in order to emphasize that each
probability space is necessarily tied to some random phenomenon, we
introduce the concept of a "probability chain" where the considered
probability space is always preceded by the symbol of the corresponding
random phenomenon:

One probability chain is the minimal autonomous and closed abstract
probabilistic concept. The probability chains (I) are indivisible abstract
molds. A probability space without a definite corresponding random
phenomenon stil1 is not a definite concept, it still is only a fragment of a
concept, just like a probability measure without a definite universe of
dementary events and a definite algebra of events on this.

But mere systematic symbolization of the random phenomenon is not
slltlicient, of course. The structure of what is indicated by the symbol
(I', U) has to be specified also. In another work, within a "general syntax
of relativized conceptualization," we have done this in quite general terms

(Mugur-Schachter, 1991, pp. 277-286) and have drawn interesting conse
quences. Here, however, for simplicity, we adopt a less general approach,
wncerning specifically the quantum mechanical random phenomena. This
will sullice for indicating the essence of the texture that relates Kolmogorov
prohabilities, quantum probabilities, and informational probabilities. Im
lIIersi()n into the general syntax of relativized conceptualization and a
(killikd logical and mathematical representation of the obtained structures
will he allempted elsewhcrc.

grasp intuitively the essential conceptllill dilrerence hclween Kolmogorov
probabilities and quantum probabilities and 10 speciry a rormal signature
of these. Then Ishow that the quantum mechanical probability trees can be
imbedded in the theory of information, where one can construct an
informational representation of the quantum mechanical transformation

theory that renders this theory intelligible, both physically and conceptu
al1y. Thereby there wil1 appear the first lines of a new formalism where the
probabilistic, the quantum mechanical, and the informational representa-
tions combine.

In domains where formalisms have been strongly developed and play
a crucial role it is not easy to draw attention to traits that go beyond the

formalism, that have to be seized with its help, but traversing it to reach
beneath. In order to free from any parasite the conceptual contours that we

want to convey, we shal1 stick to most current mathematical expressions,
such as can be found in textbooks.

The key concept in this work is that of a random phenomenon.

Before Kolmogorov's approach, the formalized features of the theory

of probabilities concerned quasi-exclusively the probability measures. The
involved events (elementary or not) were left in the substratum of the
formalization and in general were not even symbolized. Kolmogorov has
drawn them into the realm of the systematical1y symbolized and he has

explicitly tied them to mathematical expression. In his approach any
probability measure n is defined only inside a probability space [U, T, n],
where U = {ei} (i E I, I an index set) is a universe of elementary events ei>

T is an algebra of events defined on U and n is a probability measure posed
on T. Thereby it became obvious that a probability measure separated from
a definite universe U of elementary events and a definite algebra T of events
on U is not a definite concept, that it is a fragment of a concept. This has
been an enormous progress. However, the process of making explicit the
whole concept of probability is not yet exhausted. In Kolmogorov's

approach any universe of elementary events U is conceived to be produced
by some "random phenomenon," but this notion is neither explicitly
defined nor systematical1y symbolized. So the way in which the operations

and processes from the random phenomenon produce the elementary
events ei E U remains vague. The structure of the channels through which
semantic substance is drawn out from the pool of "physical reality" and is

poured into the considered probability space is not yet specified, while on
the other hand, though hidden, it plays a crucial role in the conceptualiza
tion. This entails, concerning the generated events and probability mea
sures, very puzzling ambiguities. These motivated the a posteriori
mathematical and logical characterizations of structures of probability

(P, U) MtW-+ [U, T, n] ( 1)
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2. THE QUANTUM MECHANICAL PROBABILITY TREES

2.1. The Essence of the Hilbert-Dirac Formulation of Quantum Mechanics

Quantum mechanics studies states of microsystems. These are repre
sented by normalized kets I'" > that are postulated to form a (Hilbert)
vector space. From a physical point of view this formal postulate consti
tutes "the principle of superposition": If there "exist" two states with state
vectors 1"'1> and 1"'2>' then there also "exists" any state with state vector
1"'12> = AI 1"'1 > + A21"'2>' where AI, A2 are arbitrary complex numbers.

The predictive qualifications of the states are probabilistic. Formally,
they are obtained with the help of linear and in general noncommuting
dynamical operators 0 (quantum mechanical observables). The language
and the algorithms are as follows. It is asked, for instance, what (density of)
probability n("', wj) there is, if a measurement of the physical quantity
represented mathematically by the observable 0 is performed on the state
with state vector (ket) I'" >, to obtain a physical outcome Vj corresponding
to the eigenvalue wj of O. The answer is founded on the principle of spectral
decomposability (the expansion postulate): on the basis of this principle one
performs the spectral decomposition of I'" > with respect to 0, I'" > =
Lc("', wj) IUj >, where IUj> and wj are, respectively, the eigenvectors and
the eigenvalues of 0, determined by the equation 0luj> = wjlUj >,jeJ, J an
index set, and c("', wj) = <uj I"'> are the expansion coefficients. The sought
probability is postulated to be n("', Wj) = I<Ujl'" >12 (contrary to certain
beliefs, this cannot be entirely derived).

Two distinct predictive probability measures corresponding to two
noncommuting observables 01 and O2 but to the same state vector I'" > are
related according to the quantum mechanical transformation theory, i.e.,
according to the equations c("', W2n) = Lj cxnjc("', wIJ, j eJ, n eN (J, N are
index sets for the eigenvalues of, respectively, 01 and O2; CXnj= <Vn IUj > are
the transformation coefficients from the eigenvectors Iuj> of 01 to those

Ivn> of O2),
When the probability postulate n("', wj) = Ic("', Wj)j2 is combined

with the transformation formula c("', w2n) = Lj cxnjc("', Wlj) (as is done, in

particular, within the representations of "successive measurements"), the
transformed expression acquires the form

Ic("', w2n)!2 = \~ CXnjc("', Wlj)r

= L ICXnjIZlc("', Wlj)j2 + ["interference" terms] (2)
j

where the "interference" terms contain products c*("', wl;)c("', WZk) or

c("', wIJc*("', W2k): In the probability n("', W2n) = Ic("', WZn)!2 of an eigen
value of the observable O2 written as a function of the expansion coefficients

corresponding to the observable 01, there appear terms involving the
probabilities n("', WIJ = jc("', Wlj)j2 of the eigenvalues of the observable 01
and furthermore other terms. A probability n("', W2n) is not just a linear
superposition of the probabilities n("', IDIJ. In this sense, there exists an
"interference of probabilities" tied to a change of representation performed
according to the transformation theory.

When the probability postulate n("', wj) = Ic("', wj)!2 is combined with
expressions of the type ''''12> = AI 1"'1 > + A21"'z> entailed by the principle of
superposition, the probability IC("'12' Wj)12 of an eigenvalue of the observ
able 0 acquires the expression

!c("'12' wj)j2 = IAt C("'I, wj) + A2c("'2' wj)j2

= IAt C("'I, Wj)12 + IA2c("'2' wj)!2 + ["interference" terms] (3)

So again the probability n("'12' wj) is not just a linear superposition of the
probabilities n("'I' w) and n("'2' wj); there appear "interference" terms
involving this time products C("'I' wj)C*("'2' wj) or C*("'I, Wj)C("'2' wj). In
this sense there exists also an "interference of probabilities" tied to the

principle of superposition.
There are obvious formal similarities between these two sorts, (2) and

(3), of "interference of probabilities." But there are also obvious formal
dillcrences (Mugur-Schachter, 1991, pp. 1414-1415). The existence of the
laller is quite generally neglected. A fortiori no questions are raised
concerning their semantic substratum. And, on the sole basis of the formal
similarities, in both cases the situation is indicated in a flattening way by
the same expression, "interference of probabilities." The interference of
probabilities is the most striking specific of quantum theory as compared
with the other probabilistic physical theories.

So vectors, operators, equations, and probability measures are ma
nipillated accordingly to algorithms. Hidden beneath these algorithms, the
prohahilistic organization of the quantum theory remains obscure. What
IIn: Ihe ('()rrespondences between, on the one hand, the basic quantum
nlcchllnical descriptors-state vectors I'" >, operators 0, eigenfunctions
IInd ei~envectors of these-and, on the other hand, the basic probabil
istk descriptors, random phenomena and probability spaces? In the ab
III:m'c of clear answers the involved significances cannot be perceived. The
physklll meaning of the two principles that dominate the formalism-the
principle of sllperposition and the principle of spectral decomposition-as
wl:1I liS the semantic content of the interferences of probabilities, remain
VIII!"I~•
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We have shown (Mugur-Schachter, 1991, 1992a) that the correspon
dences between quantum mechanical and probabilistic descriptors can be
established, and that indeed they enlighten the semantics encapsulated in
the quantum mechanical formalism. The summary of these results is as
follows.

2.2. Formal Quantum Mechanical Probability Chains

Consider a pair (1t/1 >, Q), where 1t/1 > is the state vector assigned at the
time t to the considered micro system Sand Q is a Hermitian operator
representing a quantum mechanical dynamical observable. For each such
pair the quantum theory defines a family of elementary probability densi

ties n(t/1,wj)=I<ujlt/1>12,jeJ (J an index set) for the emergence of an
eigenvalue wj of the observable Q when a measurement of Q is performed
on S in the state 't/1>. These generate a definite probability for any event
constructed from elementary events wj. So one can define for any pair
(1t/1 >, Q) a formal "probability chain," i.e., a sequence (random phe
nomenon) MAN-+ [a probability space] that can be symbolized by

[(t/1,Q), {Wj}] MAN-+ [{Wj}, 1:, n(t/1,Q)] (I')
where [(t/1, Q), {wj}] is the symbol for the random phenomenon that
involves the state vector 1t/1 > and the dynamical observable Q and produces,
by reiteration, the universe {wj} of formal elementary events: 1: is the total
algebra on {wj}; and n(t/1,Q) is the probability density law on 1: determined,
via the law of total probabilities, by the elementary probability density law
n(t/1,wj) = l<ujlt/1>12.The set of all the formal chains (1') with total algebras
inside them includes the expressions of all the conceivable quantum
mechanical predictions.

2.3. Factual Quantum Mechanical Probability Chains

Each formal probability chain (I') points toward a corresponding
factual probability chain

[(P"" MoJ, {V OJ}] MAN-+ [{V OJ}' 1:F,p(PrjJ' Mo)] (I")

where PrjJis the operation of state preparation that produces the state with
state vector 1t/1 >; Mo is an individual measurement evolution corresponding
to the observable Q; VOj is a "needle position" of a macroscopic device Do
for measurements of the observable Q; [(PrjJ'Mo), {V OJ}] is the random
phenomenon that involves the operation P rjJ of state preparation and the
individual measurement evolutions Mo and which, by reiteration, produces

the universe of elementary events {V OJ}; 1:F is the total algebra on {V OJ} (F:
factual); and p(P~" Mn) is the probability measure on 1:,...

2.4. The Factual Quantum Mechanical Random Phenomena

So:

• A quantum mechanical random phenomenon consists of a sequence of
two distinct operations, an operation P", of state preparation and a
measurement operation Mo that ends with the registration of a "needle
position" VOj'

This is a complex structure of which the characteristics and their conse
quences will progressively appear in what follows.

2.5. Connection between Formal and Factual Chains

The probability chains (I') and (I") are connected as follows. Each
eigenvalue wje{wj} from a formal chain is posited to be calculable as a

function wj = fo(Voj) of that observed "needle position" VOj from the
lilctual chain that is labeled by the same index j e J. Furthermore, each

factual elementary probability density p(P"" Mo, VOj) from p(P"" Mo) is
posited to generate-via wj = fo(Vo)-the corresponding formal elemen

tary probability density n(t/1,Q, wj) contained in n(t/1, Q):

p(P""Mo, VOj) => n(t/1,Q,wj) = I<uj1t/1 >12

This-and only this-designates the family of assertions that quantum
mechanics offers for experimental testing (Mugur-Schiichter, I992b).

2.6. Elementary Quantum Mechanical Chain Experiments

A sequence PrMo-Voj from a quantum mechanical random phe
nomenon that generates a factual chain (1") will be called an "elementary
quantum mechanical chain experiment" (eqmce). It possesses a remarkable
",wh.\'c·",'ah!e operational-processual depth wherefrom there emerges into
Ihe ohservable only the extremity VOj that contributes to the construction

of Ihc f:lctual observable universe of elementary events {V OJ} from a chain
(I"). Each observable quantum mechanical "event" (non elementary) from
IIn IIlgehra 1:/0' from a factual quantum mechanical probability space con
Illills inside its semantic substratum all the unobservable sequences of
opel'tltions and processes forming the corresponding elementary quantum

nll~chllnical chain experiments that end up with the registrations VOj of a
ncedle position contained in that event. So any quantum mechanical
prmHclion concerns either only one elementary quantum mechanical chain
Qxpcrimcnt or a whole union of such experiments.

• 'l11t'dC·lIlc·IIlar.••l{/lt1ll11/111l1It'dulllical chain experiments from a quan
1/111/11It't'ltcllllt'tIlrt/lulol1l l,ltC'II0ll/c'I/ol/are lite ':/ihers" out of which is



Correlatively, the formalism does not distinguish clearly between the three
different levels of conceptualization that are involved, the individual level,
the statistical level, and the probabilistic level. This introduces much
confusion, especially in the logical approaches (Mugur-Schachter, 1992b).

Wj =fQ(VQ), n(if;, wJ = I<ujIif; >Iz = n(P 1jJ,MQ, VQj)

Nonetheless, and this is a striking fact:

• Within the formalism of quantum mechanics the individual, elemen
tary quantum mechanical chain experiments are devoid of any repre
sentation.

made the factual substance of the quantum theory. They generate
directly the basic, the individual level of the quantum mechanical

probabilistic conceptualization, reflected in the universe {V Qj} of
elementary events.

Therefrom are then successively built the other two-abstract-metalevels
of conceptualization, the statistical metalevel, reflected in the algebra TF of
events, and the probabilistic meta-metalevel, reflected in the probability

measure p(PIjJ' MQ).
The individual fibers PrM Q- VQj specify completely the structure of

the physical-operational channels by which semantic substance, drawn
from the pool of what is called physical reality, is transformed and poured
into the factual quantum mechanical probability spaces. So also into the
formal ones, via the two connective relations

2.7. The Quantum Mechanical Probability Trees

We fix now an operation of state preparation P1jJ'Consider the set of
all the factual probability chains (1") determined by P '" and the set of all the
physical processes MQ of measurement evolution corresponding to all the
dynamical observables 0), Oz, 03, ••. defined in quantum mechanics. The
probability chains from this set constitute together a certain whole, a

certain unity, in consequence of their common provenance PIjJ'
What is the space-time structure of this unity?
This can be regarded as the central question of the present inquiry into

quantum probabilities.
For all the chains from the considered unity, the space-time support of

the operation of state preparation P IjJis by definition the same. But not also
for all the individual measurement evolutions MQ involved in this unity.
The set of the individual measurement evolutions splits into classes
Mx, My, ... , each class of measurement evolutions corresponding to a set
{0t,h=I,2, ... ,m}, {Ot,h=1,2, ... ,k}, ... , of m,k, .. " mutually
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"compatible" observables, whereas two observables from sets of observ

abies tied to two different classes of measurement evolutions are mutually
incompatible.

Many textbooks as well as some research papers contain very confus
ing considerations and mathematical nuances concerning "successive or
simultaneous measurements of compatible observables" versus the projec
Iion postulate, formal commutation, etc. But in fact the qualifications
"simultaneous" or "successive" simply are devoid of relevance with respect
10 the physical features involved in the concept of compatible observables.
Indeed consider first only one class of individual measurement evolutions,
sa y Mx. Each one measurement evolution from M x can be constructed

physically-such that the one registration of one value VXj of the "needle
position" of the corresponding macroscopic device Dx produced by it
pl:nnits one to calculate-from this unique physical datum, but with

Ihe help of various theoretical connecting definitions wt = ft(Vx),
II -= I, 2, ... , m -all the m different eigenvalues w'h labeled by the same
index j, for all the observables Oi from the set of mutually compatible
ohservables corresponding to the class Mx of measurement evolutions.
( I;onnally, this amounts to mathematical constructibility, out of ot of any
ot her observable O'{:from this same class M x, and to commutativity of Oi
IInd n~r).So each set of m eigenvalues wL h = 1,2, ... , m, produced by
one registration VXj, involves just one physical process of individual
Illeasurement evolution Mx, covering just one given space-time support.
No condition of (physical) simultaneity or successivity is involved.

Consider now two distinct classes Mx and My. These, by definition,
IIle "mutually incompatible" in the sense that it is not possible to construct
physically an individual measurement evolution such that the unique
olliconw V\'I produced by it permits calculation of both a corresponding
oigl:nvllille tied with Mx and a corresponding eigenvalue tied with My. This

1,\'11'11111is {'o/11/1/Olllycalled "Bohr complementarity." Formally, this impossi
hlilly is expressed by mathematical nonconstructibility of Hn observable Ox
l~orn:spollliing to the class Mx from an observable Oy corresponding to
111101111:1' cllISS M J', and by noncommutativity between Ox and Oy.

The situation entails that, globally, the whole, the unity constituted by
1110 (1I\semhle or all the factual probability chains corresponding to a fixed
opol'lliion or slale preparation PIjJpossesses a branching, a treelike space

lilll,,' ,\'1/'111"1"1"',Lei us symbolize this treelike structure by T(P 1jJ)and let us
('1111 It "I he quanlulll Illechanical probability tree of the operation of state
,,1I'IIIII'lIllon I"J • ."

Itl~ul'l1 1 provides a simplilied example of a probability tree with
ollly 1'0111" ohservahlcs: two compalible observables 0~2and otz eorrespond
Inl1 11.1 tlm slime class MiloI' individual measurement evolutions, and two

Mugur-Schachter60



Fig. 1. The quantum mechanical probability tree T(P ,,) of the operation of state prepa
ration P".

incompatible observables 03 and 04 tied, respectively, to individual mea
surement evolutions M3 and M4' The factual, observational probability
spaces corresponding to the measurement evolutions M12, M3, and M4

realized on the state represented by 11jI) are indicated respectively by the
notations [Vk12], [Vk3], and [Vk4]' Each one of the probability spaces [Vkn],

n = 1,2,3,4, emerges-with respect to an origin of times reset to zero after

each elementary quantum mechanical chain experiment-at some corre
sponding specific time t12 (i.e., t12 - t), t3 (i.e., t3 - t), and t4 (i.e., t4 - t).

The branch corresponding to 0lZ and otz, so to M12, contains a very big
number of fibers P,p-M12-Vlzj each one of which ends up with one needle
position, say VI2j'E {VIZj}' that permits us to calculate two distinct corre
sponding eigenvalues, WI2j'E{WIZj} and wtzj'E{Wt2j}' via two different
theoretical definitions, wIZj' = fl2 (VI2j')' Wt2j' = ft2 (V12j')' The branch cor
responding to 03' so to M3, contains a big number of fibers P,p-Mo.-V3j

each one of which ends up with a needle position V3j' E {V3j} that permits
one to calculate a unique corresponding eigenvalue W3j'E {w3j} via a theo
retical connecting function w3j' =f3 (V3j')' Similarly the branch correspond
ing to 04' so to M4, contains a big number of fibers P,p-Mo.-V4j each one
of which ends up with a needle position V4j'E{V4j} that permits one to
calculate a unique corresponding eigenvalue W4j'E{W4j} via a theoretical
definition W4j' = f4(V4j), So the space [Vk12] is endowed with more specifica
tions than the spaces [Vk3] and [Vk4]'

In all the fibers of the tree the initial phase, of state preparation, covers
the same space-time domain A(PIjI) = AxAt (the common space-time trunk
of the tree), with At = t - to. In the case of an evolution M12 corresponding
to the two commuting observables 0lZ and Ot2, the subsequent phase of

illl,
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r(ifl, (I)],,) = L rx"lc(ljI, WI;)
I

VUIIU): !l111l/) •• w,/III,) unt! UJh)=w2,,1",,), VjEJ, VkEK

l'II)='Lc(IjI,W;)IUj), VIIjI), VA: Aluj)=wjluj);
11'(1/', tll,) arc the expansion coefficients] which permits us to calculate the
Pll,huhility dcnsity n(ifl, wi) via the probability postulate

n(ljI, Wi) = l<u;IIjI)12 = Jc{IjI, wj)j2

.1. Fillully, the whole quantum mechanical "transformation theory"
1'111111 tht~ husis !III;)} of an observable 01 with eigenvalues wJj to the basis

1\"4 > I of un ohservable O2 that does not commute with 01 and hasII Wlilvulues(/In (so 1'1'0111 a branch with measurement evolutions MI to that
wilh 11Il1ll11lll'ementevolutions M2):

measurement evolution covers, for each fiber corresponding to the process
M 12 of measurement evolution, a unique space-time domain A(M12). In the
case of a measurement evolution M3 corresponding to the observable 03 or
a measurement evolution M4 corresponding to the observable 04' the
involved space-time domains are distinct, namely A(M3) and A(M4).

So in the concept of probability tree of a state preparation PIjI, the
individual, the elementary quantum mechanical chain experiments are
explicitly represented and they determine the corresponding branching
space-time structure of the tree. The other two involved levels of concep
tnalization-the statistical and the probabilistic-are generated by two
distinct and hierarchically connected sorts of reiterations (Mugur
Schiichter, 1991, 1992a, 1992b) and they are implied only in the probability
spaces from the tops of the branches, namely, respectively, in the algebras
and ill the probability measures from these spaces.

A quantum mechanical probability tree is a remarkably comprehensive
construct. Most of the fundamental algorithms of the quantum mechanical
calculus which combine one normed state vector with the dynamical
operators representing the quantum mechanical observables can be defined
II/sit/I' anyone tree T(IjI):

I. The mean value of an observable ° in a state with vector 11jI):

('/'IUltll ). VIIjI). VO.
2. The uncertainty theorem, for any pair of observables:

(1jI I(Anl )211j1)<1jI I(A02)211j1)

~ l<if/IUj2)(01 O2 - 0201)11jI)1 = (lj2)(hj2n), VOb O2

J. The principle of spectral decomposability (expansion postulate)

()lIulltum, Kolmogorov, Information Probabilities
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(J, K are index sets for the eigenvalues of, respectively, 01, O2; IY.kj= <Vk luj)

are the transformation coefficients).

2.8. The Principle of Superposition: A Calculus with Whole Trees

But as soon as the principle of superposition comes into play the
embeddability into one tree hits a limit. The corresponding algorithms
cease to be embeddable into one single probability tree: Several trees have
to be combined. The quantum mechanical formalism contains implicit
calculi with whole probability trees.

The principle of superposition is connected with expressions of the

type 10/12) = A,110/1) + A,210/2) that combine (at least) three trees, namely
those introduced by the three operations of state preparation P"'\2, P"'1'
and P "'2 corresponding to the three involved state vectors 10/\2), 10/1 ), and
10/2)' The acceptance of such linear composition expressions for any pair of
functions 0/ I' 0/2 is a condition sine qua non for the formal representability

of the set of such functions by "kets" 10/1) and 10/2) that are abstract
objects forming a vector space. However, and this is of basic importance,
the state vectors 10/12),1"'1)' and 10/2) themselves are only indirectly
concerned in the principle of superposition:

• Regarded as a physical assertion, the principle of superposition

concerns directly only the operations of state preparation P", I, P "'2,

and P"'12 which produce the states with state vectors 10/1)' 10/2)' and
10/\2) (Mugur-Schiichter, 1991, pp. 1405-1424). Namely it amounts

to the following assertion: If the two operations P",I, P "'2 are realizable
separately, then also realizable is any operation P "'12 that is some
functional of these operations, P "'12 = G(A,I' A,2, P "'b P "'2)' such that it

produces the state with state vector 10/12) = A,110/1) + A,210/2)'

On the other hand, the probability law for the state 10/\2), for any
observable 0,

n(o/\2, Wj) = l<ujI0/\2)12

= l<ujlA,lo/l +A,20/2)12

= n(o/I, wJ + n(0/2, wJ + ["interference" terms]

"compares" the three probabilities n(o/I, wj), n(0/2, wj), and n(o/\2, wj).

Namely it refers the various probability measures {n(o/\2, Wj),jEJ}, VO,
from the probability spaces of the unique tree obtained when the operation
of state preparation P "'12 = G(A,I , A,2, P ",I, P "'2) is realized, to the corre
sponding probability measures {n(o/b wj),jEJ}, VO, and {n(0/2' W;),jEJ},

VO, from the trees that would be obtained if the operalions or state

preparation P "'I and P "'2 were realized separately. In short, the well-known
IInd so puzzling algorithmic injunction "the amplitudes of probability have
10 be added, only the probabilities interfere" corresponds to the following
distribution of the descriptional roles:

I. For the composition of the-nonobservable-state descriptors

1'/1). a linear representation is chosen. This permits a vector space formalism
.lIlt· the state descriptors, which is highly convenient in calculations, but
offers no possibility to express interaction between the physical effects of

Iwo separately realizable operations of state preparation P"'I and P"'2 when
Ihese are involved in a more complex operation of state preparation

l'ifd2 = G(A,I, A,2, P"'I' P"'2)'

2. For the composition of the-observable-probability distributions
corresponding to a state described by a linear combination of state vectors,
II nonlinear representation is chosen. This permits one to express the
ohservable, factually existing mutual "influences" between the physical
eflccts or separately realizable operations of state preparation when these
lire involved together nonsequentially, "in parallel," in a more complex
opera lion or state preparation that produces the state represented by the
cOllsidered linear combination of state vectors.

This distribution of the descriptional roles is just a pragmatically
collvellienl system of choices of representation. And it is most important to
dl,\'tlngui,\'h clearly between the formal features chosen for the representation
of Ihe st IIdied racts and the physical characteristics of the facts themselves:
IItltll'ith.\,twuling the use that it makes of vector spaces, quantum mechanics,

".I' It,\'I/llIIdmtic definition of probabilities, is a nonlinear theory that describes
III g/'/1/'ml IIonlinear processes. This is a noteworthy example of descrip
tlollill strategy.

'1..1). Slll'elrIIl Decomposition of One State Vector Versus Superposition
fir Sl'vcrIIl State Vectors

Till: concept of a quantum mechanical probability tree brings strik
11I1!ly11110evidence Ihat the expressions of linear composition-in the
11111IIIIj111IIIIcnl sense-involved in the principle of spectral decomposition
1I~1'ljl'10 fllcls Ihnl are.limdamentally different from the expressions of linear
IJOlllpollillon involved in Ihe principle of superposition:

I, Tho prillciple or spectral decomposition concerns future results of

Ihll ""'II,\'III'/'/II/'llt011an already prepared state with state descriptor 10/), of
Ihll /II//t dy"nl1licnl ohservahle tied to Ihe considered decomposition: The

11101II~, IIlId Ihe Irllnk 1'/1) of a single tree are given. and each one of the
ilpplkllllollN or Ihe principle of spectral deeomposilion involves (is con
IillIlI'd III) l11lchlslvcly this 11/1/' Iree fOllllded on this rool-and-Irunk
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(P "', 11/1»), the object of study being what is denoted by "11/1 )." The
principle of spectral decomposition involves no reference to any other trees
(Mugur-Schachter, 1991, pp. 1412-1416).

2. Whereas, as already emphasized, the quantum mechanical principle

of superposition concerns basically operations of state preparation P "'i,
i = 1, 2, ... , n, so roots of several trees. Each one of these roots

P "'i, i = 1, 2, ... , n, could found its own probability tree, but in fact this
possibility is not realized, all the considered roots P"'i being combined in
only one effectively realized operation of state preparation P"'12 ...n =
G(AI' A2, P"'l' P"'2"'" P"'n) that founds only one tree; which, as men
tioned, entails reference relations between the one effectively realized tree
and the several other possible trees (Mugur-Schachter, 1991, pp. 1421
1424), in particular reference relations involving all the probability mea
sures from these other trees, for any dynamical observable.

Besides these semantic mutual specificities, there are also purely math
ematical specifics of the linear composition expressions involved in the
principle of spectral decomposition, with respect to those involved in the
principle of superposition (Mugur-Schachter, 1991, pp. 1412-1416).

2.10. Two Sorts of Interference of Probabilities

The fundamental difference between the physical significance of a
spectral decomposition of one state vector and the physical significance of
a superpsition of several state vectors splits the fundamental quantum
mechanical notion of "interference of probabilities," into two essentially
different sorts of interferences of probabilities (Mugur-Schachter, 1991, pp.
1412-1416).

1. The interferences of probabilities entailed by the transformation
theory [equation (2)] involve the principle of spectral decomposition ap
plied, for one state vector, to-necessarily-two bases introduced by two
distinct and noncommuting observables 01 and O2; this sort of interference
of probabilities is found to describe an abstract, only conceived "interac
tion" between the two-factually incompatible-predictional points of
view (or grids) for future qualification of the studied state, corresponding
to 0) and to O2, This first sort of interference of probabilities will be shown
in the following sections to define the essential semantic difference between
Kolmogorov probabilities and quantum probabilities, and, furthermore, to
be a basic character of the informational approach.

2. Whereas the interferences of probabilities tied to superposition state

vectors 11/112) = Al 11/11 ) + A211/12)' can emerge for a single observable 0 (any
one), and they are found, as mentioned, to describe physical il/teractions. If
o is the position observable, these interactions, in certain conditions, arc

cvcn directly observable. Furthermore, the interference of probabilities tied
to the superposition state vectors are found to involve nonremovably a very
pcculiar model for what is called a micro system, notwithstanding the
orthodox claim that any model is banished from the quantum theory
(Mugur-Schachter, 1991, pp. 1429-1430). This second sort of interference
of probabilities can be related to the basic specificities of nonsequential,
"nclwork," parallel computation as compared with the sequential Turing
machine computations.

2.11. Confusing Mathematical "Unifications"

The Hilbert-Dirac formalism and language tend to identify the spec
tI'llI dccompositions of one state vector on a basis of eigenkets, with the
I-Hlpcrpositions of several normalized state vectors. Ipso facto they tend to
idcntify also the interferences of probabilities entailed (within the transfor
malion theory) by the principle of spectral decomposability, with the inter
I'ercnccs of probabilities entailed by the principle of superposition. Such
Id~:lItilications cannot be regarded as a conceptual unification. They are just
UIJlllllntic cOf!!usion, within a flattening concept of linear composition-in a
pllrely mathematical sense-of "generalized kets" from a Hilbert space of
kcls. This confusion has secreted an opaque stratum of conceptual mud
wherc thc "interpretation problems" have floundered for more than 60

)',:lIrs (M ugur-Schiichter, 1993, pp. 98-121). Furthermore, it conceals cru
1'1111I-ligllificanccs involved in the quantum mechanical formalism, the very
ILI'I'nl of a unified mathematical representation of the emergence and
I!volution of pallerns inside networks of "information processing entities"
01' IIny kind.

1..Il. (;Iohlll View

So IIny observable quantum mechanical elementary event VQJ is
111'111111111forlh by some elementary quantum mechanical chain experiment,

~"nll.; IIher '·,/,-Mu-Vu). These fibers are the semantic matter described by
Iht) 'InllnlUIl1 Iheory. Any fiber P",-MQ-VQ} belongs to a probability chain
(1',/" MIJ, jVIJt!) NvVv"> [{Vj}, T",p(P,p,Mn, VQ)]. In its turn any probabil
ily dlllln helongs 10 II branch of a probability tree T(P",), the tree tied to
llill opl:l'lition ",/, of slate preparation which starts that chain. So the
plllhilhilily Irees dclinc a purtitiof/ on the set of all the chains (hence on the
,wi "I' 1111the lihel's, hence on the set of all the observable quantum

111I'I'hllnklll elcmenlal'Y events Viii).
Whon om: conlell1pla les Ihe landsca pc determined by this partition

l'III'1i 11'1:1:IIppCllrs endow!;d with ils own "interna)" calculus (mean value of
'IllY dYlIlIlIIIl'lI1oh~t~rvllhll~(2 wilh respect 1(1 Ihc state vector 1'/') tied to the
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considered tree, the uncertainty theorem for this state, the principle of
spectral decomposition, the predictional probability laws for this state, and
the whole quantum mechanical "transformation theory" that relates the
probability measures from the different branches of the tree), while the
different trees are related by a calculus with whole trees determined by the
principle of superposition and the probability law for superposition states.
This is a hierarchical view (fibers, chains, trees, connections between trees).
It draws attention to the role played by the space-time characteristics of the
operations by which the observer produces the objects to be studied (state
preparations) and the processes of qualification of these (measurement
operations).

How did the concept of a quantum mechanical probability tree
emerge? We have performed just an attentive analysis of the connections
between, on the one hand, Kolmogorov' s standard fundamental probabilistic

concepts (identically reproducible procedure, universe of elementary events,
an algebra of events on this universe, a probability measure on this algebra)
and on the other hand the main descriptors of the quantum mechanical
formalism (state vectors, operators, eigenfunctions) and the factual coun
terparts of these. The unique novelty has been an explicit representation of
the physical processes involved in the quantum mechanical random phe
nomena, with their space-time characteristics. And this novelty brought
forth, with a sort of inner necessity, the probabilistic metaconstruct with
treelike space-time support described above. But this metaconstruct,
notwithstanding the fact that it has been produced by only a systematic
confrontation with current standard probabilistic concepts, obviously tran
scends the abstract theory of probabilities as it now stands. Indeed, in
Kolmogorov's approach the most complex basic probabilistic structure
explicitly defined is one probability space. Not even the notion of a
probability chain is explicitly defined as a basic monolithic construct. A

fortiori, the concept of a probability tree, consisting of a whole family of
irreducibly distinct but interconnected probability chains, a family of
incompatible random phenomena rooted into the same operation of state
preparation, is devoid of an abstract equivalent defined within the current
theory of probabilities.

• In Kolmogorov's approach, features induced by the space-time char
acteristics of the random phenomena have somehow been abstracted
away.

This first conclusion already suffices for proving the fundamental
importance of an explicit use of the abstract concept of a probability chain,
and of an explicit specification, in any application, of the physical structure
and content of the involved random phenomenon, with ils space-time

characteristics. The structure and content of the random phenomenon that
~cncrates a probability space are the very roots of the probabilistic concep
Ilialization. So far these roots have remained hidden. We shall now show
Ihat, uncovered, they bring into evidence the basic difference between
Kolmogorov probabilities and quantum probabilities, and furthermore
Ihey reveal a basic unity between the quantum probabilities and the
informational approach.

:1. QUANTUM PROBABILITIES VERSUS KOLMOGOROV
I)ROBABILITIES

:1.1. "Deterministic Probabilistic Metadependence" between Branches of
One Tree

It has been often emphasized that the quantum mechanical formalism
docs not define conditional probabilities relating, for a given state vector,
the probabilities of eigenvalues of noncommuting observables. Nevertheless,
alld Ihis is a striking fact, the quantum mechanical transformation theory
!t'(I/I,w2d =L/l.kjC(t/J'WIj)' \10\,°2: O\IUj)=Wljluj), °2Ivk)=WZklvk),
VI u.l, Vk E K, .I, K index sets, IXkj = <v k Iuj) the transformation coefficients]
pm'lUilsliSto determine entirely from the knowledge ofthe whole probability
lIu:aSlire n(t/J, 0.) from one branch of a probability tree, any probability
,h:uuity I{,(~/, WZk)i2 of any elementary event (so also of any event) involved
III 1IIIOIhcrbranch of that tree tied to an observable O2 which does not
('Ollllllute with 0 •. So the quantum mechanical transformation theory is
('qllivalellt to the specification of a functional relation

n(t/J, (2) = FQM[n(t/J, 0\)] (4)

hlJlwl~ell the two measures n(t/J, (2) and n(t/J, (1), which amounts to
I'/IIIIII}.: the measure n(t/J,Oz), initially expressed in its "native" language
Ih).WH II introduced by the observable O2 itself, into the "foreign"
1i'"l!lIa~e 111/,), wlI I} that is the "native" language of the measure n(t/J, 0\)
"ollcCl'lliu!(another observable 0., incompatible with 02'

The relation (4) can also be regarded as a "deterministic probabilistic
1II1'llId,·/'I'm!.·II{'(''' in the following sense: According to the current theory of
Pl'ohahilitics thc conccpt of "probabilistic dependence" is by definition
I'onlllll:d insidc 01/1' probability space where it concerns isolated pairs of
I"'I'III,~. Two cvcnts arc licd by a "probabilistic dependence" if knowledge of
olin of thcsc cvcnts "influcnccs" thc expcctations concerning the other one.
H/I 11111 relatioll 1[(I{I, n.!) = f·;)Mln(.{I, 0.)] of mutual determination of the
pr'ohahllity mcasurcs from a quantum mcchanical probability tree can
IIlIlul'lllly hc rCfl,ardcdas a "dctcrillinistil: probabilistic mctadependence":

L ~_n ~
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"deterministic" because it consists in mutual determination; "probabilistic"
because, though this determination is a certainty about "influence," never
theless it concerns probabilistic constructs; "metadependence" because it
concerns, not pairs of events from one space, but globally pairs of probabil
ity measures on entire algebras of events from incompatible probability
spaces, which, with respect to events, are meta entities.

The notion of a probabilistic metadependence can also be upheld
otherwise (Mugur-Schachter, 1992b, pp. 990-991). Imagine a physicist
who does not yet know which state vector II/J) "describes" the state
produced by the operation of state preparation P1jJ' So he makes various
measurements on this state in order to establish experimentally relative
frequencies permitting one to induce the postulation of probability densities
that shall determine an adequate mathematical descriptor \I/J) (Mugur
Schachter, 1991, pp. 1408-1412). Suppose that he decides to work with
two noncommuting observables QI and Qz, and, on the basis of some
reasons, envisages two sets of possible probability measures on the corre
sponding spectra, namely LI = {n( I/J, QI)} and Lz = {n( I/J, Qz)}, respectively
(for simplicity suppose they are discrete). The physicist now asks: What is
the (meta)probability for finding, by measurements, this or that probability
measure from LI or this or that probability measure from LZ?" In the
absence of any criteria for answering otherwise, he will have to presuppose
equipartition on both LI and Lz.

Suppose that, furthermore, the physicist has to answer the problem: "If
for the spectrum {comt} ofQI the probability measure were nk(l/J, QI) ELI (k:
known), what would be the corresponding conditional probability to find this
or that measure n(l/J, Qz) from Lz on the spectrum {cojz} of eigenvalues of
Qz?" This new problem concerns now the product-probability space where
the elementary events are all the possible associations (nk(l/J, QI),
n(l/J, Qz)) between the one measure nk(l/J, QI) ELI (supposed known) and the
various unknown probability measures envisaged in the set Lz =
{n(t/J, Qz)}. Now, in the absence of any theory or data, the physicist, again,
must presuppose equipartition-which amounts to presupposing indepen
dence between nk(t/J, Qd and the measures n(t/J, Qz)ELz; that is, that the
probability of a joint event (nk(t/J, Qt), n(t/J, Qz)) is the product of the
probability of the known measure nk(t/J, QI) (fixed) and of the proba
bility of the unknown measure n(t/J, Qz) (variable inside Lz and there a

priori posited to be uniformly distributed). But the quantum mechanical
transformation theory imposes another answer, directly opposed to this
one. Namely, it asserts that the probability measure on the universe of
elementary (meta)events (nk(l/J, Qd, n(t/J, Qz)) is a Dirac dispersion-free
measure that associates the probability I to the unique joint event
(nk(l/J, Qd, n(t/J, Qz)), where n(V/, Qz)ELz is related with the knownllleasure

n,,(t/J, Qd ELI according to the set of equations n(t/J, COZj) =
ILm !XjmCk(t/J, colm)i2, '<Ij EJ, '<1m EM (J, M are index sets), while the probabil
ity of any other one of the considered joint events (nk(t/J, Qd, n(t/J, Qz» is
posited O. Which means maximal, deterministic "dependence."

Obviously, the "deterministic probabilistic metadependence" defined
above transcends the Kolmogorovian concept of probabilistic dependence.
Probabilistic dependence in Kolmogorov's sense does not concern the meta

concept of whole probability measures, it concerns individually and on the
.first level of probabilistic conceptualization two distinct events from the
algebra from a probability space. As to correlation (functional relation)
between two whole measures from two distinct spaces, when it is asserted
in Kolmogorov's sense it involves that these two spaces can be imbedded
into a unique product space where the universe of elementary events is
produced-physically-by one random phenomenon, and where the ele
mentary events from the primitive spaces reappear now in the algebra as (in
general) dependent events, in Kolmogorov's sense. The quantum mechani
cui concept of "deterministic probabilistic metadependences" repels these
characters.

3.2. The "Potential-Actualization-Actualized" Character of a
Probability Tree

Any criterion of mutual consistency of a set of probability measures
(Accardi, 1983; Gudder and Zanghi, 1984; Pitowski, 1986; Beltrametti and
Muczynski, 1991) certainly reflects some factual unity inside the involved set
of random phenomena. The relations (4) -insofar as they are required by
thc quantum mechanical transformation law (2)-can be regarded as a
qlluntum mechanical condition of mutual consistency of the set of probabil
Ity mcasures from a probability tree. Now, the mathematical nucleus of the
•.elutions (4) cntailcdby (2) consists of the unique state vector It/J) concerned
hy tha I tree, that labels the unique result of a given operation PIjJ of state
pn:puration:

• nil' 1///(/1/1/111/11/cchanical "deterministic probabilistic metadependences"

(4) IWIII'I'£'1lprohahilily measures from distinct branches of a given
{ll"ohl/hilily Irt'£' rt~lleCIIhe factual oneness of the studied state from the

CO/II11l01lIrllllli (!( Ihal Iree.

Indeed Ihe slale with state vector IV/), repeatedly reproduced by the
n~ltcrntions or Ihe operation 1"/' or state preparation, somehow "is" there
onch lime Ihlll one operation 1"1' has been achieved: in a certain purely
l)hYtlkul-opcrulionlil scnsc this slatc has bccn crealed, l!t:filll'tl, it has been
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I

extracted out of the continuum of "reality" and endowed with physical

specificities imprinted upon it by the operation P",. But these specificities-if
we take the liberty to posit their ontological being-lie nevertheless outside
the realm of the observable. So from the point of view of knowledge they
hold the role of merely a certain just posited monolith of indefinitely many
still nonrealized sets of potentialities of outcomes of only possible but
indefinitely many future processes of observation that can be performed on
what is labeled 11/1).

• The operation of state preparation P", acts as a noncognitive, purely
physical definition of an infinite set, but a set of mere potentialities.

With respect to the Frege-Cantor theory of infinite sets as well as with
respect to all the logical approaches proposed so far, this is an essential
innovation (Mugur-Schachter, 1992c, pp. 254-260).

The ontological content conceived for the indefinitely many infinite sets
of still nonrealized potentialities physically defined by the operation of state
preparation P", is nonremovably relative to corresponding indefinitely many
conceivable future processes of observation. This relativity generates, for the
monolith of potentialities labeled 11/1), classes Mx, My, ... of mutually
incompatible processes of actualization of this or that particular set {V Xj},

{V Yk}, ... of actualized observable manifestations of interaction of the
studied entity (state), with this or that sort of macroscopic device
Dx, Dy, .... On these various sets of actualized manifestations of interac
tion are then founded the various possible actualized observable branch
probability spaces from the considered tree.

• The probability tree of a state with state vector 11/1) is a unity endowed
with a "potential-actualization -actualized character" ("potential" by
what is labeled 11/1); "actualization" by the measurement evolutions

Mg; "actualized" by the registered eigenvalues wj = fg(Vg).

In other terms, and this is in striking contrast with the role assigned to the
random phenomenon in Kolmogorov's approach:

• The random phenomenon from any given factual quantum mechanical

probability chain (1") is posited to factually create the elementary
events from the chain.

The elementary quantum mechanical projectors onto the one-dimensional
subspaces from a basis of the Hilbert space of a microsystem, are in fact
"factual generators." The purely geometric character assigned to them in the
calculus is factitious and deprives them of the time and change that they
involve. The formalism of quantum mechanics occults the durations of
the individual measurement evolutions that produce the fadual quantum

mcchanical elementary events from the factual chains (1"). Nevertheless,
their hidden temporal dimension imprints a nonremovable mark on the
formalism, in particular on its factually significant logical features (Mugur
Schachter, 1992b, pp. 974-983). Once this is clear, one understands intu
itively why formal proofs of incompatibility between the quantum
mcchanical formalism and hypotheses of "objectification" -weak or strong
(Busch and Mittelstaedt, 1991; Busch et al., 1992)-are certainly correct in
their conclusion, no matter how these proofs are constructed.

Now, while the "deterministic probabilistic metadependences" (4)
hctween the probability measures from two distinct branches of one tree,
rcgarded as wholes, reflect the oneness of the studied state with state vector
It/I) from the common trunk of that tree, we assert that:

(a) The absence, beneath the global functional relation (4), of joint or
conditional probabilities relating events (elementary or not) from two
distinct branches of a tree reflects the fact that a quantum mechanical
random phenomenon is conceived to create ontologically the corresponding
elcmentary events.

(b) The interference of probabilities in the sense (2) of the quantum
I/lI'dwnical transformation theory reflects the fact that the elementary events
V.I'Iand V Yk that determine, respectively, the eigenvalues WXj = fxiVx) and
fIIl'~=fy(Vyk) of two noncommuting observables Ox and Oy tied to two
incompatible classes of measurement evolutions Mx and My, cannot be
nclualizcd simultaneously for one replica of the studied state.

Prcliminarily, these contentions can be upheld by a comparison with
Kolmogorov's representation. Afterward, with the information theory, we
11111111 obtain a deeper insight.

.\.:\. Kolmogorov Transformation Theory

Kolmogorov's representation presupposes, implicitly but quite essen
Ilnlly, that thc elementary events from a universe U and the events from the
III",chra r considered on U are entities (objects, states) with properties
which --onto logically-all preexist actualized to the considered random
1'11l:llolllcnon.Thc paradigm is extraction from an urn. The random
I'hl1llOlIICnOnwhich brings forth a probability space [U, "t", n] is assumed to
tll1:u:riheexdusively the emergence of cognitive connections between the
ollNcrvcr's consciousncss and these onto logically preexisting actualized
I'l'Ol'crlics. Let us cxaminc thc formal consequences of this posit.

Imagine an urn wilh N objcds in it, each one of which possesses actual
'qunlilicnlions or two Iypes, a lype or qualification A.i of some "nature" A,
!!'nli/.cd via the "valucs".i (j = 1,2, ... ,1/) that thc naturc A assumes, and
II IYPl~or qualilkalion /lk of a "naturc" /I, rcalizcd via thc "valucs" k

~
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(k = 1,2, ... , m) assumed by the nature B (for instance: A = form =f and
j = cubic, spherical, ... , pyramidal; B = color = c and k = red, white, ... ,
dark). In these conditions the classical theory of probabilities introduces
the expressions

p(Aj) = L p(Aj, Bk) = L p(Aj IBk)p(Bk) = L (ljkP(Bk) (5)
k k k

where p(Aj, Bk) is the joint probability to extract an object with qualification
j of nature A and qualification k of nature B, and p(AjIBk) = (ljk is the
conditional probability to extract an object with qualification k of nature B,
given that its qualification of nature A is j. In (5), just as in the quantum
mechanical "transformation relation" (2), Ic(tjI, w2j)j2 = ILk (lkjc(tjI, W1k)12,

the probability of emergence of a qualification j from a given class A is
expressed as a function of the probabilities of emergence of all the possible
qualifications k from another class B. In this sense (5) also is a "transforma
tion law," like (2). But in (5) the probabilities p(Bk) do not "interfere" inside
the second part of the equation, i.e., the probability p(Aj) is a linear
combination of the probabilities p(Bk). This formal character translates
directly the assumption of the existence of definite joint probabilities
p(Aj, Bk) for the events (Aj, Bk), so of definite conditional probabilities
p(Aj / Bk) [since these, in (5), are themselves the coefficients (ljk of linear
combination]. In its turn, the assumption of existence of joint and condi
tional probabilities is entailed by the more basiC assumption of actualized
ontological preexistence, for each object from the urn, of an A-and-B
qualification: It is in consequence of this last assumption that a random
phenomenon where the identically reproducible procedure is reducible to the
paradigm of extraction from the urn can produce a universe of elementary
events consisting of joint qualifications (Aj, Bk). Then each qualification (Aj)
or (Bk) -separately-labels an event from the total algebra on this universe
of joint elementary qualifications, and all the considered probability assigna
tions p(Aj), p(Bk), p(Aj, Bk) are embedded into a unique probability space,
thus forming a "classical polytop" (Pitowski, 1989) or a "classical correla
tion sequence" (Beltrametti and Maczynski, 1991). In short, the semantic
assumption of actualized ontological preexistence of all the considered
qualifications generates all the syntactical characteristics of the Kolmogorov
concept of probability, in particular, the linear character of the Kolmogorov
transformation law (5).

Notice that the same formal effect (5) can be obtained also via the less
restrictive semantic assumptions of either (a) the possibility of simultaneous
actualization of ontological properties of the studied entity producing all the
considered qualifications (elementary events), or (b) the possibility or
actualization of only one ontological property or the studied entity which

in its turn produces simultaneously all the considered qualifications, as
happens inside one branch of a quantum mechanical probability tree.

3.4. Incompatibility with Quantum Mechanics of the Kolmogorov
Transformation Law

The formalism of quantum mechanics is incompatible with a general
acceptance of anyone of the semantic assumptions able to entail (5). The
various sets {V x;}, {V yd, ... of mutually incompatible qualifications
produced by the random phenomena stemming from a single operation of
state preparation are all assumed quite essentially not to preexist ontologi
cally actualized: if they were not, it would not be possible to associate them
all with a single operation of state preparation. So two such sets {V Xi} and
{ V Yk} can only belong to two different random phenomena involving two
incompatible classes of individual measurement evolutions Mx and My,
respectively. So no universe of elementary events consisting of simultaneous
(joint) qualifications (V x;, Vyk) can ever be both factually produced for the
same single replica of the studied entity. Then each one of the sets {V xJ,
{V Yk}, ... -in the role of a universe of elementary events-can only found
its own factual probability space, structurally different from all the other
ones. No unique probability space is factually constructible where it is
possible, as for Kolmogorov probabilities, to locate definite individual

conditional probabilistic connections p[(V Xi)/V yd between qualifications
from the two sets {V Xj} and {V Yk }, belonging all to the same "classical
poly top." In such conditions a linear transformation law of the type (5)
would be devoid of factual counterpart.

And indeed-faithful to operationality-the quantum mechanical
transformation theory asserts instead the transformation law (2),
!c(tjI, WYk)j2 = ILi (lkjC(tjI,wx;)j2, where in the second part of the equality,
besides a linear superposition of the probabilities Ic(tjI, wxi)j2, there appear
also other, "interference" terms: This is a formal signature of the basic
semantic difference between Kolmogorov probabilities and quantum
mechanical probabilities.

4. QUANTUM MECHANICS VERSUS INFORMATION THEORY

Formally it is clear how the quantum mechanical bra-ket algebra
produces the transformation algorithm (2). Also, it is quite remarkable that
it does produce it. Yet, the algorithms of quantum mechanics offer no clue
"Yhateverpermitting one to understand the physical and conceptual implica
tions or the quantum mechanical transformation theory; they suggest no
model concerning the real processes that bring forth the results asserted by
t helll.

~ '
I .. ~_~~ __ ~ ~_~ _
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On the other hand, consider the theory of information. This theory
-quite basically-involves probability laws. However, the deep relation,
within this theory, between numerical probabilistic estimations and the
other representations remains obscure.

We shall now show a far-reaching fact: namely, that in its essence the
informational concept of probability is the same as the quantum mechanical
one, so fundamentally distinct from the Kolmogorov concept of probability.
Guided by the recognition of this semantic unity, we shall be able, despite
radical differences between the quantum mechanical system of representa
tion and the informational one, to sketch out an informational transforma
tion theory which is clearly comparable with the quantum mechanical
transformation theory. This amounts to the construction of an intelligible
model for the physical processes involved. The way in which this model
emerges, the nature of the encountered resistances, and the content of the
result, suggest the possibility to synthesize a new formalism where a.
generalized bra-ket algebra on a vector space is explicitly related to the main
elements of the general informational representations of input and output
sources connected by channels. Such a formalism might be able to represent
mathematically the emergence and circulation of patterns of any kind.

4.1. Information Trees

Consider an information source S = {(Ai, p(Ai)), i = 1, 2, ... , n} with
zero memory, which emits an input alphabet A = {Ai} with input probabil
ity law p(Ai) on it. Consider also an information channel C, which, when
it is associated with the input source S, yields an output alphabet B = {Bk }
with an output probability law p(Bk) on it, k = 1, 2, ... , r. Together, the
input source S and the channel C form an information system I(S, C). In
the most general case any input sign Ai can, with a certain conditional
probability p(Bk/Ai), produce any output sign Bk (in particular, p(Bk/Ai)
can be 0 for this or that pair (Ai, Bk)). Inside I(S, C), the channel C
is defined-relative to the information source S-by a channel-matrix
M(CjS) of which the elements mik are the conditional probabilities
p(Bk/Ai) for an output Bk, given a definite input Ai:

M(C/S) = [mik] = [p(Bk/Ai)]

where the possible inputs Ai are displayed in row and the possible outputs
Bk are displayed in column. The total probability of an output Bk is
calculated as

p(Bk) = LP(Ai)p(Bk/Ai)

If in particular the matrix M(C/S) is such that each input sign can
produce at most one output (each row from M(C/S) contains only one

nonzero element, which is I), the information system I(S, C) is called
"deterministic with noise," because it ensures certain prediction but only
probabilistic retrodiction.

If M(C/S) is such that one given output can be produced by only one
input (each column contains only one nonzero element), the information
system I(S, C) is qualified as "nondeterministic without noise," because it
ensures certain retrodiction but only probabilistic prediction.

The central point in this context is that an input alphabet {(Ai, p(Ai)),
i = 1, 2, ... , n} emitted by the input source S from an information system
I(S, C) denotes an ontological initial content which in general is transformed
by p.assage through the channel C from that system. The channel Cfactually
creates the observed output alphabet {(Bk, p(Bk)), k = 1,2, ... , r}. So, with
respect to the channel C and the observed output alphabet, the input source
S = {(Ai,p(Ai)), i = 1,2, ... , n} acts as a mere potentiality. And with
respect to another channel C' =1=C, this same source S acts as a different.
potentiality, in the sense that it entails another observable output alphabet,
{(B'k, p'(B'k)). So the input source S = {(Ai, p(Ai)), i = I, 2, ... , n} can also
be regarded as a set of indefinitely many potentialities, relative to the

indefinitely many channels to which it can be connected. Between an input Ai
and an output Bk there is process, there is "relative time", time populated
by change relative to the acting pair (S, C). The conditional probabilities
p(Bk /Ai) from the matrix of the acting channel C with respect to the acting
source S are Bayes conditional probabilities, not Kolmogorov conditional
probabilities (Jaynes, 1979). But this reproduces the very essence of the
concept of a quantum mechanical probability tree. This concept, then, quite
fundamentally, must be transposable in informational terms. Let us perform
the transposition.

Consider a quantum mechanical probability tree. The operation P", of
state preparation that generates the tree can be regarded as an "information
source" without memory. According to orthodox quantum mechanics, such
an information source emits only one input sign, namely the state repre
sented by the state vector It{;). Furthermore, each type of process of
measurement evolution Mx, My, ... from a branch of the probability tree
can be regarded as a particular sort of information channel; let us call it a
"quantum measurement information channel" Cx, Cy, ... , producing,
on a corresponding output device Dx, Dy, ... , an output alphabet
{VXi}' [Vyd, ... , respectively. So-according to orthodox quantum me
chanics-each branch of a probability tree acts as a nondeterministic

il!!lmnation system I(P"" Cx), I(P "', C y ), .•• without noise corresponding to
. a set of observables {nt, h = I, 2, ... , I} all tied to the same class Mx of

individual measurement evolutions, or, respectively, to a set of observables
In~.,K = I, 2, ... , .I'} all tied to another same class My of individual
measurement evolutions, etc. For the information system I(Pt//' C.I,), for
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(6)

I

instance, the channel matrix and the output probability law are

M(Cx/P",) = [m"'j] = [p(VXj/tll)]

p(VxJ =p(l/1)p(VXj/tll) =p(VXj/tll)

with p(l/1) = I (Mugur-Schiichter, 1991, pp. 1402-1405) and where

p(VXj/tll) = p(P "', Mx, Vx:;) are the quantum mechanical factual probability
densities from (1") which, via the functional relations w~h =f}(V xJ,
generate all the quantum mechanical eigenvalues w}j and the corresponding
predictional probability densities n(l/1, w}j) = Ic(l/1, w}j)j2 for all the observ
abies Q}. Because the input alphabet emitted by P", contains only one input
sign 11/1> from (6), M( C x /P "') from (6) is a column matrix of factually
observed probabilitiesp(Vxj/tll) that, by the expansion coefficients c(l/1,wt),
generates all the column-ket matrixes representing the state vector 11/1) with
respect to the basis of common eigenkets of all the observables nt tied to
the eigenvalues w}j of this or that observable Q}, h = 1,2, ... , I:

• A quantum mechanical probability tree T(P "') can be regarded also as
an "information tree" IT(P",), i.e., as a branching structure of
information systems obtained when one given input source is combined
with all the mutually incompatible "quantum measurement channels"
connectable to that source.

This shows that-in its semantic essence-the informational concept of

probability can be identified with the quantum mechanical one.

4.2. An Informational Transformation Theory?

In such conditions one expects furthermore an informational-Bayes
transformation theory of the same type, in essence, as the quantum mechan
ical one. So we now ask: What, expressed in the language of the theory of

information, is the relation between two output probability laws, regarded
as wholes, corresponding to two different branches from the information

tree IT(P",) corresponding to a given state vector 11/1)? For instance, between
the output probability laws produced from 11/1 > by two incompatible
processes of measurement evolutions Mx ~ Cx and M Y ~ C Y ?

Now, as far as we know, information theory, as it now stands, does not
contain an answer to this question. There is no informational transformation

theory stating a general relation between the output probability laws of
incompatible information systems involving the same source.

Moreover, it is not even possible to work out such an answer so long
as one conserves the hypothesis of only one input sign (in our case 11/1»
produced by the considered source (in our case P "'): with this highly
degenerate hypothesis that entails in (6) a column matrix M( Cx / P",), the
informational formalism-contrary to the quantum mechanical vector

~

space bra-ket algebra-offers no indications whatever as to how one could
advance beyond the separate assertion of each one of the mutually incom
patible output laws connected with 11/1), in order to elaborate a connection
between these. Inside the informational system of representation the situa
tion seems to be blocked.

4.3. Macroscopic-Microscopic Representation of an Information System

However-and this is a noteworthy fact-the obstacle, though it does
not dissolve, recedes as soon as one supposes "hidden variables."

Suppose that a quantum mechanical operation of state preparation P '"
creates, at the microscopic level of specification, a physical mode of existing
of the studied state labeled by the state vector 11/1> that can be globally
characterized by one from a whole set A = {Ai' i = 1, 2, ... , n} of n pos
sible different "hidden" input signs, n > 1, p(Ai) being the input probability
of a given AiEA. Now, for reasons of descriptional homogeneity, a micro
scopic input state represented by an input sign Ai can only be conceived to
combine directly with an equally microscopic channel state. So suppose
that in each one realization of an elementary quantum mechanical chain

experiment P",-Mx-Vxj the Cx-channel situation corresponding to the
involved individual measurement evolution Mx, such that in that realiza
tion it emerges at the microscopic level, can be globally characterized by
one from a whole set of different possible "hidden" channel-state signs,
respectively {,urx, r = 1,2, ... , m}, m > I.

Consider now two mutually incompatible measurement evolutions Mx
and My. We introduce the following symbols.

• {(Ai' ,urX)}-Xj and {(Ai' ,usy)}-Yk, respectively, are the set of all the
pairs (Ai' ,urX) that can contribute to the output VXj, and the set of
all pairs (Ai>,us y) that can contribute to the output VYk' Also,
(Ai' ,urX)-Xj and (Ai' ,usY)-Yk, respectively, are an element of
{(Ai' ,urX)}-Xj and an element of {(Ai' ,usY)}-Yk.

• {Ai}-Xj and {A;}-Yk, respectively, are the set of all the input signs Ai

that can contribute to the output VXj' and the set of all the input signs
Ai that can contribute to the output Vyk. Also, A."iXj and AjYk, re
spectively, are an element from {Ai} -Xj and an element from {Ai} --> Yk.

• i,u-;/ is a channel sign ,urX such that, if associated with )'i, it generates
a pair (Ai' ,urX)-->Xj, and, i,u;/ is a channel sign ,usY such that, if
associated with Ai' it generates a pair (Ai' ,uSy)-->Yk.

The notations containing an arrow are "predispositional" notations, in
the sense that they qualify capacities of the input signals Ai relative to this

or that possible future observable output VX1' or VYk> etc. In agreement with
statistical thermodynamics, the delined notations presuppose the condition:
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(7)

(CST) For any channel Cx, one given observable macroscopic output
VXj in general can stem from any pair (Ai' JlrX)E {(Ai' Jlrx)} _Xj.

We furthermore admit the following rather unavoidable "deterministic"
postulate:

(PD) A given pair (Ai' Jlrx)-Xj can produce only one corresponding
macroscopic output VXj'

Consider now a predispositional set {Ai} -Xj. The information theory
admits in general nonrestricted possibilities concerning the transformations
from an input signal Ai to an output sign V Xj :

(Cn) For any channel Cx, each input sign Ai is able to contribute
either to any output sign from the output alphabet {V Xj }, or to
only some of these signs, or to none; so a given output sign VXj
can be connected with several or all input signs Ai'

But the formalism of quantum mechanics implies the following restrictive
condition CQM:

(CQM) Each elementary quantum mechanical chain experiment P",
M x- VXj from any quantum mechanical random phenomenon
does end with some factual result VXj' So each input sign Ai

contributes to at least one output sign VXj, for any I(P"" Cx)'

In consequence of CST and PD, with respect to the set {(Ai' JlrX)'
i = 1,2, ... , n, r = 1,2, ... , m)} of all the possible pairs (Ai' Jlxr) (regarded
as a new input alphabet produced by the individual interactions between
the source P", and a quantum measurement channel Cx, entirely specified
at the microscopic level of description), an information system I(P"" Cx)
acquires now'the structure of a deterministic system with noise, ensuring
certain prediction but only probabilistic retrodiction. Compared with the
initial direct informational transcription (6) of the orthodox quantum
mechanical assumptions, which require only one input sign It/J> and
consequently translates into a nondeterministic information system
I(P"" Cx) without noise, the situation appears as simply reversed.

So, instead of highly degenerate channel matrixes of the form (6), a
microscopic-macroscopic characterization yields now the following quan
tum-measurement-channel matrixes for any two mutually incompatible
information systems I(P"" Cx) and I(P"" Cy) from the information trec
IT(P",) of the operation P '" of state preparation:

M(Cx/P",) = [mX.ij] = [p(Vx:/)/(Ai, JlrX)] = [<5/rJ]

M(Cy/P",) = [m".id = [p(V"d/(A'i' II.,,,)] = [(5i,.AI

t

where, by definition, bir,j = 1 if the pair of indexes i, r corresponds to a pair
(Ai' JlrX)E {(Ai' Jlrx)} -Xj, and otherwise bir.j = 0; bis,k = 1 if the pair of
indexes i, s corresponds to a pair (Ai' Jly.) E {(Aib JlsY)} - Yk, and otherwise
bis,k = O. Furthermore, the channel situation is independent of the activity of
the source, so we just set p(A;, JlrX) =p(A;)P(Jlrx). This, together with the
form (7) for the channel matrixes, entails for p(Vx) and p(Vyk) the
following successive expressions

p(VX) = L LP(Ai, Jlrx)p(Vx)(Ai, JlrX)i r

= L LP(Ai, Jlrx)-Xj = LP(Ai) LPCJl;i)bir,j
i r i r

(8)
p(VYk) = L LP(Ai, JlSy)p(Vyk/(Ai, JlsY)

i s

= L L (Ai' JlSY)-Yk = LP(A;) LpCJl;;!<)bis.k
i r i s

The representation (7), (8) defines-for the particular case of the
information systems I(P"" Cx), I(P"" Cy), etc., from a quantum mechani
cal information tree IT(P",) -a two-level extension of the customary
one-level informational representations: the macroscopic (VXj, Vyd and the
microscopic (Ai' Jlrx, JlsY) levels of any information system I(Cx/P",) from
IT(P>fr) are now both explicitly represented and connected. This entails
already a nontrivial consequence:

• The representation (7), (8) yields, for the quantum measurement

theory from any attempt at a hidden variables interpretation of
quantum mechanics, a general informational framework, where now

also any individual quantum mechanical chain experiment is repre

sented, namely by a corresponding sequence P r(A;, Jlrn)- Vnj of a
macroscopic operation P>fr'a nonobservable microscopic pair (Ai' Jlrn)
and a macroscopic observable output Vnj.

4.4. On an Informational Transformation Law

In contradistinction to the initial one-level representation (6), does the
two-level representation (7), (8) permit us finally to express in informa
tional language a transformation law?

The answer will be very instructive: It will appear that, starting from
the two-level representation (7), (8) and taking into account, as a guide, the
cssential characteristics of the quantum mechanical transformation law (2),
it is possible to build at least one informational expression of a transforma
tion law. This exprcssion can bc obtaincd in a form which-in a certain
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quite fundamental sense that stems directly from the basic semantic identity
between the quantum mechanical and the informational concepts of proba
bility-is the "same" as the quantum mechanical form (2). But such an
informational expression of a transformation law can be drawn into
existence only by struggling against strong descriptional resistances; correl
atively, it is not effectively computable, in contradistinction to the quantum
mechanical law (2). Quantum mechanics represents its particular sort of
information systems in a way which is radically different from the informa
tional one, far more performable from a computational standpoint, and
possibly, conceptually innovating. The contrast will suggest possibilities of
a new, synergetic representation.

Preliminarily, let us notice that-from the outset-an informational
transformation law of the Kolmogorov type (5) is excluded, since in an
information tree IT(P.p), just as in a quantum mechanical tree, the output
signs are factually created by passage of the input signals through the
acting channel, so one cannot define factually significant conditional proba
bilities relating directly an output VXj produced by a channel ex with
outputs V Yk produced by another channel eY that is incompatible with ex.

Consider now the quantum mechanical transformation law (2)

n«t/J, w~h)= Ic(t/J, (1)) 12

= I~IXjkC(t/J,Wtk)12

= L IlXjk12Ic(t/J, WtkW + ["interference" terms]
k

= L IlXjk12n«t/J,Wtk) + ["interference" terms]
k

This law equates the probability density n«t/J, wtj) of a eigenvalue wtj of
an observable Qt tied to measurement evolutions Mx, with a linear
combination Lk IlXjk121t«t/J, wtd of the probabilities n«t/J, Wtk) of all the
eigenvalues Wtk of another observable Qt tied to measurement evolutions
My incompatible with the evolutions Mx, plus ["interference" terms].
Examine the involved coefficients, IXjk= (Vk IUj>. These are the elements of
the transformation matrix SXY from the basis {Iuj >} of common eigenvectors
Iuj> of all the observables Qt tied to the measurement evolution Mx

from the channel ex, to the basis {h >} of common eigenvectors IVk>of all
the observables Qt tied to the measurement evolutions My from the channel
ey. By means of the passage from the eigenvector Iuj> to the eigenvector
IVk>, a number IXjk= (Vk Iu; > characterizes the passage from the factual
output VXI corresponding to Ill; > to the factual output V I'k corresponding

to Ivk> [the "degenerate" relations between eigenvalues being accounted
for with the help of the involved connective functions wt =ft(Vxj),
w tk =ft(V Yk), etc.]. So each coefficient IXjkhas a value depending on the
involved pair of factual outputs VXj and V Yk: IXjk= IXjk(VXj' V Yk). Further
more, notice now that each coefficient IXjkis: (a) quite independent of the
involved concept of source (the operation of state preparation P.p and its
input sign It/J », and (b) free of any probabilistic connotation. But a basis
{Iuj >} of common eigenvectors luj> of all the observables Qt tied to the
quantum measurement channel ex and the corresponding set {V Xj} of
factual outputs constitute together the quantum mechanical characteriza
tion of ex:

• The formalism of quantum mechanics characterizes a "quantum mea
surement channel" ex independently of any information source, and

via the nonprobabilistic concept of a family {Iuj >} of eigenvectors
IUj>, each one of which represents formally-by a function-a type
of "signal" that remains invariant by passage through ex and pro
duces a factual observable output sign VXj.

The descriptional strategy that generates the quantum mechanical transfor
mation law (2) is divide ut impera: In the formal language of orthodox
quantum mechanics the umbilical cord between input sources and channels
is neatly cut. The quantum measurement channels ex are described "intrin
sically" and in a nonprobabilistic way by their invariant input signals IUj >,

formally determined by the observables Qt via the equation Qt IUj > =
wUuj >. The input probabilities for an information system I(P.p, ex) from
an information tree IT(P.p) simply are not defined [or are trivially defined
as n(t/J) = 1; see (6)]; they are skipped. The accent is put exclusively on the
operational-observational obtaining of the output signs VXj entailed by the
invariant input signals of ex, the eigenvectors luj> from the common basis
of all the observables Qt. The probabilities p(V x) of these output signs are
calculated with the help of the association of (a) the principle of spectral
decomposability It/J>= Lj (uj It/J>Iuj> of the mathematical representation
of the unique input It/J>emitted by P.p and (b) the "predictional" probabil
ity postulate n«t/J, wtj) = l(ujlt/J>12. This permits one to represent non
linear effects of interaction between any pair of two distinct input sources
P.pl, P.p2 that are both involved in an "interaction source" P.p12."n =
G(P.pI' P .p2' ... , P .pn), notwithstanding the use of a fundamentally linear,
vector-space representation for the input signals It/J> emitted by the consid
ered input sources P.p and for the "eigeninput" signals Iuj> of a "quantum
measurement channel" ex.

The descriptional strategy of information theory is very different.
Within (he informational language, the concept of an observable, with
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s

from the expression (8) of p(VXj)' So, as in quantum mechanics, we have in
general

Now, for k -=1=k', in general

LPeJl;yk)(jis,k -=1=LPeJl;yk)(jiS,k'

( 11)p( VXj) -=1=L ia/kp( V Yk)
k

The most straightforward definition of a coefficient ialk as a number
depending on (V Xj' VYk) is the ratio

ialk = [~peJl;1)(jir.j !~peJl;Yk)(jiS'k ] (9)

where peJl;1) =P(PrX)' peJl;yk) =p(Jls Y); ialk is posited not to be defined
when (jis,kis 0 for all the indexes s (i.e., if the involved Ai does not contribute
to the output VYb which is permitted by the assumed general conditions
CST' CIT, CQM)· The ratio (9) can be regarded as an estimation of the
'j-efficiency of the channel Cx" relative to the "k-efficiency of the channel
C y" and with respect to the input sign Ai'

With the definition (9) and with (8) we can now form a linear combina
tion Lk alkP(V yd to be compared with the quantum mechanical one,
Lk lajk 12n«1/1, Wry) from (2). We obtain

L ialkP(VYk) = ~p(Ai) L [LPeJl;1)(jir,j !LPeJl;yk)(jiS,k] LPeJl;yk)(jis,kk I k r s s

(10)

So in (10) each index k yields, by cancellation of the corresponding
LspeJl;yk)(jis,k, its own term LrpeJl;1)(jir,j' Hence (10) contains each term
Lr peJl;1)(jir,j the number of times n(i, Y) that the corresponding input sign
Ai contributes to some output V Yk from the alphabet {V yd:

L ialkP(VYk) = ~p(A;)[n(i, Y) LPeJl;1)(jir,j] (10')k , r

[according to CQM, each Ai contributes to at least one output V Yb which
excludes n(i, Y) = 0, while the upper limit for n(i, Y) is set by the cardinal
of {V Yk }]. But the sum

L p(A;)[n(i, Y) L peJl;1)(jir,j]i r

from (10') is different, in general, from the sum

LP(Ai) LPeJl;1)(jir,ji

eigenvectors and eigenvalues, is not defined (nor is a channel regarded as
necessarily being a "measurement"). The successive phases of the process
of "transmission of information" -emission of an input signal Ai, passage
through the channel C from the considered information system I(S/C),
observation of an output signal Bk created out of Ai by the passage of
Ai through C -are all explicitly represented, according to a very intui
tive view. The representation of all the phases is probabilistic, and the
umbilical cord between channel representation and the acting input source
is not cut:

• The formalism of information theory characterizes a channel by a
matrix M(C/S) of which the elements mik =p(Bk/Ai) are conditional
probabilities of an output sign Bk, an input sign Ai from S being

given, so in a way that is essentially dependent on the considered input
source S, and essentially probabilistic.

Such a representation is not adapted for expressing a transformation law.
This is why there is no informational transformation theory.

In such conditions it seems fit, in order to investigate on the possibil
ity, in principle, of an informational transformation law, and on its nature
when compared with the quantum mechanical one, to utilize the quantum
mechanical expression (2) as a close guide.

So, to begin with, let us seek, inside information theory, a linear
combination Lk aJkP(V Yk) of all the pro babilities p( V Yk) where the coefficients
alk are required as constants of which the values, as in the case of the quantum
mechanical transformation coefficients ajk = <VkIUj > = ajk(VXj, VYk), some
how characterize the passages from a factual output VXj possible by the use
of the channel Cx, to a factual output VYk possible when the channel CY

is at work: alk =alk(VXj, VYk). Now, with the assumed representation (7),
(8), the only available pools of descriptional elements for building the sought
numbers alk(VXj, V yd are either the conditional probabilities p(VXj)/(Ai, JlrX)
and p(V Yk)/(Ai, JlsY) from the channel matrixes (7) of Cx and Cy, or directly
the expressions (8) of the output probabilities p(VXj) and p(Vyk). The
conditional probabilities p(V xj)/(Ai, Jlrx) and p( V Yk)/(Ai, JlsY) from (7) are all
Ior 0, which is an obstacle in the way of a definition with their help of numbers
alk(VXj, VYk) that shall characterize the pair of outputs VXj, VYk. So let us
examine the expressions (8) of the probabilities p(VXj) and p(V Yk)' In these,
though each probability peJl;1) or peJl;/) is also connected with a
corresponding input sign Ai' nevertheless the factors LrpeJl;1)(jir,j and
LspeJl;yk)(jis.k do express channel features specifically tied to, respectively,
VXj and VYk' By the use of these factors, however, we can only obtain numbers
depending on output indexes j, k, and on an input index i, So let us indicalc
such numbers by lhc modilled symbol ialk.
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The inequality (II) can be understood intuitively from the "predispo
sitional" properties of the input signs At: The possibilities ClT entail that, in
general, the following relations hold for the predispositional input sets:

{J.d-Ykn{Ad-Yk':;60 for k:;6k' (12)

U {,q-Yk:;6 {Ad-Xj (13)
k

(while the condition CQM only requires {Ad-Xj=Ud{J.t}-Xjn{At}-Y"]),
According to (12), each input signal At can be involved in several distinct
predispositional events {AiYk}, corresponding to different indexes k; the
predispositional events {Ai Yk} interfere in general, Furthermore, according
to (13), the union Uk {At} - Ykof all the Y-predispositional sets {At} - Ykmight
not exhaust the Xj-predispositional set {At} -Xj, or might exceed it. So, if in
the expression of the probability p( VXj) (j fixed) sought as a function of all
the p(V yd we begin by writing down the linear combination Lk ta}kP(V Yk)
which, with the choice (9), for any given At, generates a term
p(At) Lr pCJl;1)Dtr.j for each Yk separately, and then add all these terms, the
possible interferences expressed by (12) and the possible inequality (13) are
not taken into account according to the law of total probabilities. Therefore
in general we shall afterward have to add-algebraically-other terms in
order to compensate for the effect on the probabilities of the "interferences"
(12) and the nonequality (7).

So, with the choice (9) for the coefficients takj(V Xj' Vyd, we finally obtain
for the transformation law an informational expression of the form

p(VXj) = L ia}kP(V Yk) + [other terms] (2')
k

Obviously (2') is of the same general type as the quantum mechanical
transformation law (2). This is a formal similitude which, across the deep
differences between the quantum mechanical and the informational strategies
for representing a quantum measurement channel, stems directly from the
semantic identity between the quantum mechanical and the informational
concepts of probability. Indeed, the informational relation (2') appears
explicitly as a consequence of the fact that the output signs V Ykare assumed
to be factually created out of the input signals by passage of these through
the "measurement channel" at work, which entails for the input signs Ai an
only "predispositional" role.

But, as announced, in the informational expression (2') [other terms I
is not effectively computable, while in the quantum mechanical expression (2)
["interference" terms] is computable. This draws attention to the specific
capacities of the quantum mechanical system of representation of informa
tion. From the standpoint of information theory, the quantum mechanical
representation amounts to just aformal scenario according !o which each onc
realization of an operation of state preparation PIj' is rcgardcd liS producing

I - l'

the whole alphabet of input pairs {(Iuj >, VXj)} distributed with probability
density p(luj >, VXj) = p(Vd = I<ujl'" >12(Wigner, 1963), out of which only
one output VXi' E {V Xj} is somehow selected during an output-registration
("reduction"), with an output probability density p( Vd = I<uj I'" >12 that
conserves the input distribution: the real physical succession commanded by
the spacetime structure of the involved probability tree is violated, and the
individual and statistical level of description are skipped, only the probabilis
tic level being expressed. On the other hand, this entails computability. But
nothing hinders to supplement this formal scenario, by a representation (8),
thereby restoring the physical succession as well as a full expression of all
the involved descriptional levels.

The considerations of this section yield a new insight into the quantum
mechanical transformation theory.

• The relations (9)-(13) and (2') permit us to form an intuitive notion
concerning the physical characteristics of the processes that can lead
to the quantum mechanical transformation theory; they yield a model

for these.

I have remarked before that the assumption of actualization of only one

ontological property VXj of the studied entity, but one that produces
simultaneously all the different considered qualifications wjx tied to M x, leads
to the same formal effect (5) as the more restrictive Kolmogorov assumption
of ontological preexistence of such properties. Therefore, as long as we stay
inside only one branch of the information tree IT(P Ij,) corresponding to the
quantum mechanical probability tree T(P",), Kolmogorov-type transforma
tion relations are applicable inside quantum mechanics, though in this
particular case also the outputs are factually created by the involved random
phenomenon. In this rather superficial sense-and only in this-the Kol
mogorov concept of probability can be regarded as simply a particular
instance of a "more general" concept of probability involved in quantum
mechanics and in the theory of information. But I mention and emphasize
that it is reducing to try to express the relation between these two concepts
of probability exclusively in terms of formal particularizations inside a more
general formal representation: I have shown (Mugur-Schiichter, 1993, pp.
94-95) that, in the order of increasingly complex conceptual elaborations,
the quantum mechanical concept of probability is prior to Kolmogorov's
concept, it is the basic concept of probability that emerges first and out of
which the probabilities in Kolmogorov's sense are built by meta conceptual
ization, as a meta concept.

4.5. Concluding Remarks

I summarize the results. The representations (7), (8), and (9), (11), (2')
enrich both quantum mechanics and the information theory:
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1. The two-level extension (7), (8) establishes a well-structured informa
tional framework for the elaboration of the measurement theory of any
attempt at a deterministic intrinsic interpretation of the quantum mechanical
formalism.

2. The information theory is now endowed with the possibility of
distinction between the microscopic and the macroscopic levelsof description,
and with explicit questions and formulations concerning an informational
transformation theory.

3. The quantum mechanical transformation theory ceases to be mere
posited blind algorithms, it acquires a model, and factual significances can
be associated with it.

4. The quantum mechanical algorithms, in spite of their profound
specificities, become in principle comparable with those of the informational
representations.

5. OUTLOOK

In previous work (Mugur-Schachter, 1992c, 1993) I have shown that the
quantum mechanical formalism has captured in it certain universal and very
basic structures of conceptualization. Guided by the recognition of this fact,
I have developed a "general syntax of relativized conceptualization" where
the mists of false problems and paradoxes emanating from implicit false
absolutes are cleaned away from the descriptions. The whole unending
multiplicity of possible descriptional viewpoints is explicitly taken into
account, and it generates a corresponding coherent and hierarchical unending
multiplicity of relativized descriptions, each of which is crystal clear, and is
connected to the others in a crystal clear way. Inside this general syntax of
relativized conceptualization, I have identified the relativized form of the most
basic sort of probabilistic conceptualization. And I have shown that quantum
probabilities are a particular instance of this form, whereas Kolmogorov
probabilities are the result of a subsequent probabilistic conceptualization,
founded-implicitly-on the basic one.

In other works (Mugur-Schachter, 1980, 1992c; Mugur-Schachter and
Hadjisavvas, 1982), I have derived the concept of informational entropy,
whereas Shannon just posited it. The derivation involves a new functional,
"the functional of opacity of a statistics with respect to the acting probability
law," that defines mathematically the connection between a probability
measure, its informational entropy, and all the statistics possible on the
involved universe of elementary events. The opacity functional integrates the
weak law of big numbers into a far more complex concept of converging
evolution. And-ifit is relativized-it endows the acting probahility law and
its informational entropy with a remakable .I'i~II{li{"(/II(·(·, lIalllcly that of an
"attractor" of all the various statistics that arc possihle 011 the involved

universe of elementary events, toward a family of "relative metaforms"
encoded in the acting probability law and mathematically represented (in a
global, mean sense) by the informational entropy of this law (M ugur-Schachter,
1993). In this way, probabilities and information are deeply unified inside
the general syntax of relativized conceptualization.

Consider now the results of this work.
From a mathematical point of view, the formalism of the quantum theory

is far more powerful and precise than that of the information theory. Its
computational capacities are outstanding. On the other hand, the theory of
information is intuitive, and it has a quite remarkable generality: it applies
to ;very conceivable change, regarded as a process by which an initial input
signal (perturbation, process, etc.) produces an output sign (effect of any
nature), by some interaction regarded as an information channel. In
particular, it is possible to represent, in informational language, networks
of closed chains of information systems where the last outputs are injected
into the initial input source, entailing "self-organization." Now, the analyses
from the last section of this work suggest the possibility of a symbiosis. The
specific performances of the quantum mechanical bra-ket formalism might come
out to be transferable to the informational approach. The messages emitted
by information sources, represented by mere strings of symbols instead of
functions, might come out to always admit of a representation as "message
vectors" forming a vector space. Correlatively, any channel might come out
to admit, like the quantum measurement channels, of a nonprobabilistic
representation, by somehow specifying for it a family of "message-eigenvec
tors" ("eigenstrings" of symbols) which characterize the channel indepen
dently of any specificity of this or that input source, and which stay invariant
by passage through that channel. Such a representation could then be split
by convenient particularizations, so as to distinguish between "dead"
channels and "living" channels (Varela, 1989). The definition of the output
and (in contradistinction to quantum mechanics) also the input probabilities,
would have to be achieved via (a) a well-formulated principle of superposition
of the effects (messages) of interacting information sources, (b) a principle
of spectral decomposability of any message-vector, on the basis of eigenmes
sages introduced by any channel, and (c) for any given class of input sources
and channels of a definite nature, specifically convenient algorithms for
calculating the output and input probability laws in such a way that these
laws, when estimated for any given interaction source, shall be correctly
related to the separate laws estimated for the sources that interact inside that
interaction source. In short, the informational algorithms might come out
to accept reformulation in terms of a very general sort of "informational
bra-ket algebra," yielding back the quantum formalism as only a particular
realization (in which all the message-vectors and message-eigenvectors are
represented by functions determined with the help of linear differential
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operators and equations, and the input probability laws are skipped). In
order to exclude descriptional knots and mists tied to nonreferred, absolute
formulations, the whole approach would have to be attempted inside the
general syntax of relativized conceptualization.

So, on a still far horizon, I perceive the first contours of a general and
radically relativized mathematical representation of the emergence and
transmission of "forms," of patterns of any kind: patterns of inorganic or
of organic matter relating a parcel of physical reality to another one, or
relating matter to mind or mind to matter, or mind to mind; or relating
patterns of behavior to ... , etc.
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