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An integrated view concerning the probabilistic organization of quantum

mechanics is obtained by systematic confrontation of the Kolmogorov formulation
of the abstract theory of probabilities, with the quantum mechanical representation

and its factual counterparts. Because these factual counterparts possess a peculiar
spacetime structure stemming from the operations hy which the observer produccs

the studied states (operations of state preparation) and the qualifications of thcsc

(operations of measurement), the approach brings forth "probability trccs,"
complex constructs with treelike spacetime support.

Though it is strictly entailed by confrontation with the abstract theory 0/

probabilities as it now stands, the construct of a quantum mechanical probahilill'

lree transgresses lhis theory. It indicates the possibility of an extended ahslracl
theory of probabilities including explicil representations of the cognitive operalillns

involved in Ihe probabilistic descriptions. So quantum mechanics appears III I,,'

neither a "normal" probabilistic theory nor an "ahnormal" one, but a pioncerill!:

particular realization of a future extended abstract theory of prohabilities.
The consequences of the integrated perception of the probabilistic IIrKani::a,'

tion of quantum mechanics are developed constructively. The current idcmijle'a·
tions of spectral decompositions, with superpositions of states, are remllvcd 'f'/lI'n:

(a) Inside the frontiers of the purely operational-observational orllwdll I
formalism, operators of state preparation and the calculus with these are de/illl'd

consistently with the definition and the calculus of quantum mechanical II/wralors
representing measurable dynamical quantities. This permits to Krasp Ihe phl'sic,ti

meaning of superselection rules. Furthermore, a complement III Ilw '/1/11/111/11/
theory of measurements is obtained. These prolonKalillns 1Ij' 1111'IIrlhodo \

formalism bring forth a "probabilistic incompleleness" lIj'lhe '/I/allil/II/ Ih"II/T,

(b) Beyond quantum mechanics as it noli' stands, a II/Ildel is III/I!ill"d lhal n'II/O/',',1

Ihis probabilistic incompleteness, "the [particle + II/edil/III / il/dipidl/al IIlod,of.'

microscopic hy certain aspects and cosmic hy IIlhers.

I I.ah"ral"irc d~ Mi'l'alliqll<' ()lIallliqll!' 1'1 Strlll'lllrl'S de 1'IIIi'mlllati"II, IllIivl'lsilv "11(,'1111',,

I'S I 01,.'. 1(,'illlS('\'dn, 1'1 'IfI! t',

UH7
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In Kolmogorov's formulation of the abstract theory of probabilities
any probability measure n is defined inside a probability space [U, T, nJ,

where D = {eJ (i E!, ! an index set) is a universe of elementary events ('"
T is an algebra of events chosen on D, and n is a probability measurc posed
on T. Furthermore, the universe D is conceived to be produced by a randolll
phenomenon. But quite currently this supposed random phcnomcnon is
neither defined nor only symbolized. Throughout what follows this lacul1a
will be compensated as follows.

Let us denote a random phenomenon by (P, D), where P is an "identi­
cally" reproducible procedure, each one realization of whieh hri ngs rorl h
one c!cmcntary event (', ED, in general variable from onc reali/.at ion or I'
to :lIlother onc (notwithstanding the supposed idcntity or the reikr:lliol1:; L

j wherehy the whole universe IJ is gener:lted. In ordn to express explicitly

, !i ~

L ....-__ ~= .._~"..--'o~, ..=" _ .:ii.i~="='~i'·~~~~-'Hci~=q~ ¥~i."~~~ ii;i;; ",.,= ~ '~ '.-=~;;';;;;. ,- i.;; ••••-",i.<. -=--. ~ .ir'...iif~"'- ou .••••••••.. ';;,i,;;,i _.o.i.~~ ...•.;;;i;;-;, w,;;,i,i;;ii, •••~"'B ••• 'i'o.;-" iiiin

Globally, the approach draws attention upon the possibility and the interest
of a general representation of the descriptions oj any kind founded upon the

explicit specification of the epistemic operations-with their spacetime

features-by which the observer, who always is involved, produces the objects to

be qualified and the qualifications of these.

1. INTRODUCTION TO PART I

Quantum mechanics yields probabilistic predictions concerning physical
events. Nevertheless, since already more than 60 years, the probabilistic
status of quantum mechanics constitutes an unsolved problem. It is
currently asserted that quantum mechanics is not a "normal" probabilistic
theory, because the various probability spaces defined by it cannot be
embedded into a unique probability space, while in all the other
probabilistic physical theories this is possible. Still more radically, certain
mathematicians hold that, notwithstanding the fact that it introduces prob­
ability measures, quantum mechanics simply is not a probability theory.

In what follows it will be shown that quantum mechanics is neither a
"normal" nor an "abnormal" realization of the abstract theory of
probabilities, but a pioneering (particular and implicit) materialization
of a deep-rooted possible future extension of the abstract theory of
probabilities as it now stands, incorporating explicit representations for the
cognitive operations (with their spacetime structure) involved in a
probabilistic description.

The concept of a quantum mechanical probability tree, which is the
central construct of the space-time probabilistic organization of quantum
mechanics, has been already defined and utilized by us in previous
works. (1-5) But we reiterate here its deduction because it yields the basis
necessary for all the further developments.

I am happy to have the opportunity to publish this work in the first
issue of Foundations of Physics dedicated to Sir Karl Popper's 90th
birthday.

In the first place, Karl Popper has probably been the very first one in
the whole world who has globally perceived the structure, a very complex
structure indeed, that is introduced by any probabilistic conceptualization,
and which, curiously, still remains more or less hidden to the mathe­
maticians, physicists, and philosophers. In Part I only t he special
materialization of this structure that is involved in the r0I'1I1:lIisl11or

quantum mechanics will appear. But in Part IT, in a sllhsL'l1l1\'1I1I';:;(IC or
Foundations of Physics dedicated to Sir Karl Popper. ill';id\' :i Idillil'i/l'd

representation of the descriptions of any sort, will emerge a quite general
representation of the probabilistic descriptions, relativized to the epistemic
actions by which the observer-necessarily involved-produces the objects
to be qualified and the qualifications of these. This relativized representa­
tion of the probabilistic descriptions brings forth a significance of the
concept of probability measure which can be regarded as a confirmation
and a formalized development of the Popperian "propensity" interpretation
of the probabilities. (6, 7)

In the second place, the two parts of this work considered as a whole
will strongly confirm Sir Karl Popper's contention that quantum
mechanics, notwithstanding the striking novelty of its formalism, is much
less essentially singular, much more "normal" than it is thought to be.
However, it will appear that this is so not because it is possible to banish
the observer from quantum mechanics. (7) On the contrary, this is so
because, for the first time in the history of the representations of reality, the
quantum theory has captured and formalized a fundamental feature that

marks universally the initial stage of any chain of conceptualization
whatever, rendering this phase nonremovably dependent on the observer (on
the "epistemic referential" chosen by him and on the spacetime features
of the corresponding epistemic processes). This, it will appear, does not in
the least hinder objectivity, but brings into evidence all the relativities of
objectivity,

2. THE QUANTUM MECHANICAL PROBABILITY TREES

2.1. The Abstract Theory of Probabilities, Physical Probabilistic Theories,
Quantum Mechanics
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that each probability space is tied with some random phenomenon, we
shall always consider a complete "probability chain" where the probability
space is preceded by the symbolization of the corresponding random
phenomenon:

2.2. The Quantum Mechanical Representation of the Probabilistic Aspects
from the Theory

For the sake of simplicity, throughout what follows we consider
exclusively the basic case of only "one micro system," whatever definition
one associates to this concept. Examination of this hasie case will slilTice I'or
conveying thc csscnce or our view.

The abstract theory of probabilities does not describe specified
phenomena; it only introduces symbols and defines the calculi with these
characterizing any probabilistic conceptualization of phenomena of any
nature. As soon as some specified domain of reality undergoes a
probabilistic conceptualization, an interpretation of the abstract theory is
obtained. Inside this interpretation, unavoidably, some probability chains
are supposed, but where, now, the constituting symbols point, more or less
explicitly, toward entities from the described domain of reality. So a
particular semantics comes in. But very often, when physical problems are
treated probabilistic ally, only the probability measures are defined
explicitly and are symbolized. The elementary events and the algebra of
events are usually indicated by words only, while quite currently the
random phenomenon which produces them remains entirely implicit.
However, by reference to the abstract theory of probabilities, it is obvious
that without a universe of elementary events, without an algebra of events
chosen on this universe, a probability measure simply is not defined. It
does not conceptually exist. A probability measure alone is not a concept,
it is a rag of a concept. Furthermore, by definition, in the absence of any
random phenomenon, a universe of elementary events cannot emerge,
hence no probability space either: The probability chains (1) are indivisible
molds imposed by the abstract theory of probabilities. So what are the
particular probability chains specific of quantum mechanics? What is the
specific semantics toward which point the quantum mechanical probability
chains?

This is the researched integrated representation of the formal qua n t UIII
mechanical probability chains, achieved with the help of the quanlulli
mechanical descriptors.

(2)

(3 )

( I')

n(ljJ,a)=I<ujlljJ)12

[a, tA' n(ljJ, A)]

[(IIjJ), A)~v} [a, tA, n(ljJ, A)]

VjEJ,

where I uj) is the eigenvector corresponding to the considered eigenvalue
ai' determined, like aj' by the equation A Iu) = aj Iuj) for eigenvectors
and eigenvalues of A. Usually the algorithm (2) for the computation of
probability measures is postulated without any explicit specification of the
probability space where the measure (2) is incorporated, nor, a fortiori, of
the random phenomenon from which this space stems. But it is obvious
that the space which contains the measure (2) can be represented by the
writing

2.2.2. The Factual Quantum Mechanical Probability Chains, The
I'ormal chains (1') are only a coded representation or othcr, );'/'111111

quanlulll mechanical probability chains. Let us identil'y now Ihese l'aclll;1I
chaills.

where the universe of elementary events a = {aj, j E J} (J an index set) is
the spectrum of the observable A, t A is the total algebra of events on a, and
n(ljJ, A) is the probability density measure on tA determined, via the law 01'
total probabilities, by the elementary probability density (2). So the whoil'
probability chain corresponding to a space (3) can be represented by the
writing

t to the considered microsystem S, and A is a Hermitian operator repre­
senting a dynamical observable-in the mathematical sense-defined for S.
For each such pair the quantum mechanical formalism defines a family of

probability densities n( 1jJ, aj), j E J (J an index set) for the emergence of an
eigenvalue aj of the observable A when a measurement of A is performed
on S in the state 11jJ). Namely, it is postulated that the specified probability
density can be calculated by use of the formula (for simplicity we suppose
a nondegenerate situation)

(1)(P, U) ~> [U, t, nJ

2.2.1. Tht' FOl'IIIal <)11:111111111 1\1('l'h:lllil':Ill'rohlihilil~' ('llIIiIlS, \ '1IlIsider
a pail' (II/I >, !\) whl'l'c II/I> 11/,(1) i,; 1111'0;\;11<' \I'I'j"l 11','. IIII11'01III IIII' lilliC

1'/1(' "i'f'II/,t! (!IIII/IIII/ll i1Il'I "Ii'llil '"I "/'oh,,/>ilill' .\·IIt' •.•·s,

I'lIr IIIl' III0I111'11111ll' :;pl'I'iril';lli"ll III IIIl' 1';/('111;11ralld'llil
We pos Ipo Ill'
plll'llllIlIl'llllIl



corresponding to the symbol (I tjJ), A) from the chain (1') and we consider
first only the space (3) [a, LA' n(tjJ, A)] involved by this chain. The
corresponding factual space can be immediately specified as follows:

The first partial procedure is the prep;lralioll opnalioll 1'(1/1(1)

which, at its final moment t(l (supposed to he del'ill:lh!t-I, illll'HIII\TS ;111

initial slale of S represellted hy tlw sl:lk 1'",'1111 I,/dl,,) , ~ 11/1,,"-; Ihis
oper:llioll covns SOII1ClIollllldl SP:Il'l"Illlll' dOIIl;1I11I II II" I"

The Factual Quantum Mechanical Random Phenomena. What is the

factual random phenomenon that brings forth the universe of elementary
events V A (D A' l A) = {Vi' j E J} from a factual quantum mechanical prob­
ability space (3')? It seems that up to now nobody has tried to specify
explicitly thus random phenomenon, not even the rare authors who have
developed explicit researches concerning the probabilistic organization of
quantum mechanics (Mackey, (8) Gudder, (9) Suppes, (10) etc.). However, as
soon as it is researched, the definition can be easily constructed. It is then
found to possess a very complex structure that brings in a sequence of three
partial procedures covering three distinct spacetime domains:

where A designates an observable and numerically valued physical aspect
of a macroscopic device D A able to generate certain materializations of the

numerical values to be assigned to the quantum mechanical observable (in
the mathematical sense) A, namely "needle positions" of D A; V4 (D A' t A)

is the universe of all the possible values Vi of the physical aspect A of D A'

a universe brought forth by "one" realization of what is globally called a
"measurement process" of the observable A, consisting by definition of a

very big number of reiterations of a registration of a value Vi' operated
each time by starting from the state of S symbolized by the state-vector I if; )
newly prepared and each such registration covering some spatial domain dA

and beginning at a time t when the state vector of S is I tjJ) and then lasting
for some nonnull time interval (t A - t) > 0 (let us denote this measurement

process by MA(tjJ, DA)); TA is the total algebra on the universe V A(DA, tA);

n( tjJ, M A) is the density of the probability measure put on T A' depending on
the state labeled by the state-vector ItjJ) and on the measurement process
MA performed on this state.

The probability measure n( tjJ, M A) on the algebra T A from the
probability space (3') is determined, via the law of total probabilities, by
the probability density n(tjJ, MA, Vi) postulated on the universe
V A (D A, t A) = {Vi' j E J} of elementary events from this space.

(4)

(4')

(.'i'l

P= [P(!~o), E(H, to, t), MA(tjJ, DA)]

P= [P(tjJ), MA(tjJ, DA)]

(P, U) = ([P(tjJ), MA(tjJ, D A)], V A(D4, tA))

where the initial operation P(tjJo) and the evolution symbolized by
E(H, to, t) become implicit.

Each realization of the procedure P brings forth one, Vi' among all the
various possible elementary events from the universe of elementary events
U = V A' Thus we are finally in the presence of a random phenomenoll
(P, U) in the standard sense of the term, namely

(P, U) = ([P(tjJo), E(H, to, t), MA(tjJ, D A)], V A(D A' tA)) (.'i)

2.2..\. Thl' ('mUl('diulI Il('t\\'('('1I III(' Fa('hml amI th(' I'unllnl ()lInllhllll
M(·l'hnlli('nll'ruhnhilii.Y Splln· ••. I III\\' \.·all we Ilallsl;II,: a faclll;d IlhS,"IV:tll!t-

constitutes "one identically reproducible procedure P," each reiteration of
P reestablishing the origin of times to. Note that the succession of only the
first two partial procedures from (4) can be regarded as a preparation
operation P( tjJ) producing the studied state represented by the state vector
ItjJ) = T(H, to, t)) ItjJo). So we can also write

or

r~/dz-~~ .-~«>/~?~<{cu<­
~rk-,"'~o.f!rr~q (~qUt-~b1
~~'~~~~Wd/~

Spacetime Quantum Probabilities . i.jI'- t£fi.N ~ e::rc:i.t:L . 1393~~ f~%)~(5-C:J9 .:><L-f'(V~ G-('tJ.
- The second partial procedure, which does not necessarily exist, is

a process E(H, to, t) of evolution of the initial state of S, leading at the
time t to the state with state-vector tjJ(t) = ItjJ). When it does exist, this
evolution (formally described by the writing ItjJ) = T(H, to, t) ItjJo) where
T(H, to, t) is the acting propagator) covers some new spacetime interval
[Ar x Ath, where At = t - t.

- The third partial procedure is the measurement operation
MA(I~, DA) from the definition of the observable space (3'), performed on
the state of S symbolized by the state vector tjJ).

As soon as the time t ~ to is fixed, the succession

([P(I/f), MA(I~, DA)], VA(DA, tA»~v} [VA(DA, t,I)' T." n(I/I, M/)I (Iff)

The expressions (3') to (1") indicate now explicitly and cxh;lIIstivl'iy
Ihe specific semantic contents of the quantum mechanical proh;lhilily
chains.

The Factual Quantum Mechanical Probability Chains. So the f;lclu;d
quantum mechanical probability chains can be written as follows:

(3')

Mugur-Schiichter

[VA(DA, t2), TA, n(tjJ, MA)]

1392
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Furthermore, each observable elementary probability density n(tj;, MA' V)
is posed to be numerically equal to the corresponding formal elementary
probability density, i.e., for any I tit) and any) E J, it is postulated that
(degenerate cases being excluded)

quantum mechanical probability space into the corresponding formal
space, so as to be able to apply to it the quantum mechanical algorithms?

In quantum mechanics each eigenvalue ai E a is posited to be
calculable as a function fA (Vi) of the observed factual value
VjEVA(DA, t2) which is labeled by the same index)EJ:

where lui) is the eigenvector of the observable A corresponding to the
eigenvalue ai = fA( VJ (Notice that thereby ai can be regarded as a random
variable on the factual space (3'), a space that is not defined inside the for­
malism). In this sense, the formal probability density (2) is a "predictional
law," verifiable with the help of the relative frequencies of emergence of the
observed values Vi' at the limit of large numbers.

The equations (6) and (7) form the key of the code which translates
the factual observable quantum mechanical probability space (3') into the
formal space (3). Any quantum mechanical prediction belongs to some
formal probability space (3) corresponding to a factual space (3').

ai=fA(VJ

n(tj;, MA' Vi) = n(tj;, aJ = I <Uj I tj;)12

(6)

(7)

{Vj,) E J}. Each observable quantum mechanical "event" (nonelementary)
from an algebra 'T A from a factual quantum mechanical probability space
(3') contains inside its semantic substratum all the unobservable chains of

operations and processes forming the elementary quantum mechanical

chain experiments that end up with the registration of a needle position Vj
contained in that factual observable quantum mechanical event. So any
quantum mechanical prediction concerns either an elementary quantum
mechanical chain experiment, or a union of such experiments. The elemen­
tary quantum mechanical chain experiments (eqmce) yield the 'fibers" out
of which is made the factual substance of the quantum theory.

2.2.5. Partial Conclusion. We are now endowed with an explicit
knowledge of the relations between, on the one hand, the basic abstract
concepts of the probabilistic conceptualization (identically reproducible
procedure P, universe of elementary events U, algebra of events 'T, prob­
ability measure n), and, on the other hand, the quantum mechanical formal

descriptors, state vectors I tj;), observables A, eigenvectors Iuj), and eigen­
values ai. It appears that quantum mechanics contains definite realizations
of each basic concept from the abstract theory of probabilities. So, in this
sense, it can be asserted that quantum mechanics is not an "abnormal"
probabilistic theory. Furthermore, we have also explicated the specific
semantical content assigned by the quantum mechanical description to the
basic abstract probabilistic concepts. Now, do these first results entail th;iI
quantum mechanics is a "normal" probabilistic theory?

2.2.4. The Processual Roots of the Quantum Mechanical Elementary
Events in the Sense of Probabilities. The expression (5) of a factual quan­
tum mechanical random phenomenon involves reiterations of a chain of
operations and processes:

[(preparation operation P( tj; 0 ))-( evolution process E )-(measurement

operation MA )-( registration of a needle position Vj of the utilized
device D A)] ( eqmce )

(( eqmce): elementary quantum mechanical chain experiment): These are
the processual roots of the quantum mechanical elemenlary i'I'l'llls ill Ihe
sense of prohahililies. An elementary quantum mechanicil ch;1iII I'X I'tTiI1I1:n(
possesses a remarkable unobservable <li'/llh whcrcl'r(lfl1 \'1111'1)',\',':11110Ihe
observahle only the extremity "',,),:,/, th;ilcolllrii>IIil':, III IIII' ,'1111:,1111\'1iOIl
of the factu:iI ohservahle ulliwr,sl' of \'I.'lllI'lllal \' "\\'111'0 V II I) J' 1,1

1

2.3. The Probability Trees of State Preparations

We arrive now at the crucial point of this section, where new COI1Sl:­
quences of the preceding analysis will manifest themselves.

We have shown that any quantum mechanical prediction concerns ol1e
or several elementary quantum mechanical chain experiments. We sh;ill
now show that the ensemble of all the elementary quantum mechanical
chain experiments falls apart into classes (if mela-slructures posscssing ;1
treelike spacetime organization.

Let LIS fix a preparation P(tj;()), a time intcrval //1 = 1-- I", aud ;1
Hamiltonian H. That is, let LIS fix the transform I'/I) = 'f'(f", I, II) 1'//,,> 01
1'//,,). Consider now the enscmble of all the probahilily chains (:'i) or (S')

correspond ing to t he fixed pa ir ( P( 1/1,,), II/I) ) and to ilil (he d ist incl d.vlIa111ic;iI
ohservahles i\. B, ('. I)...dcl'inL'd ill qual1(ulll meL'h;lI1iL's:The Ch:lills 1'111111
Ihis cnscl1lhlc ('ollslillilc 11I~',l~llH'ra entaill /1II;l\', h,:c;IIISCof Iheir ('111111111'11
11I'IIVl'II;IIIL'l"(1'(1/1,,1. 1'(' ,I, Whal i:, Illl' ~;pa\'l'liIlIC ~;lrllelll1'l~IIllhi:, 111I11v'/
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they define such a partItIOn also on the ensemble of all the elementary
quantum mechanical chain experiments (eqmce) out of which the quantum
mechanical probability chains are made.

Figure I provides a simplified example of a probability tree of a stall;
preparation, with only four observables, and making use of somewhal
abbreviated notations: A, B, C, D are physical observable aspects ("ncedk­
positions" of macroscopic devices) corresponding to the quantum meehal1i­
cal observables A, B, C, D, respectively. The measurement M I,"
corresponds to two commuting observables C, D: (the commutator or ( ,
and D is zero, [C, DJ =0), while MA' MB correspond to two noncolllmlll­
ing observables A, B with: [A, BJ #0. The notations (3')A' (3')/1 and
(3'kD indicate the observational spaces (3') corresponding, respectively, 10
the measurement processes MA' MB, and MCD performed on the stak
represented by It/J) =T(to, t, H) It/Jo). Each one of the spaccs (Y) emerges
at some specific time t4, t B' t CD' The commuting observables (', I)
generate together one common branch producing an observable space (3')

more detailedly characterized, namely with respect to bot h observa hie,';
involved. ,d(P(tpo)), L/(E), L/(P(t/J)) indicate respectively Ihe sp:lcdinll'
domains covered by the process of: preparation 1>(1//1)) or the sl:lk wilh
stale vector 11//0); evolution E(tl)' I, 1/) represenled by TUI)' I, II) 1'/'1»

1'/'); or, globally, prcp:lr:ltion 1>(1//)= rp(I/II)), 1-:(11)' I,ll) I or Ihe slall'
wilh sl:lk vector 11/'\./(;\, ,/1), ,I (I!, II'), //(CI>, '/1) indil':lkd 1't'Slll'l'livl'iv
IIIC spacclil1lL' dl)III;lin~; l'III'I'll'd hI' Ihc IneaS1l1"l'11IC111\,v,,jlliioll.·; 1'vI" !VI/I,
rvI""

For all the chains from the considered unity, the spacetime support of
the operation of sate preparation P(t/Jo) and of the Schrodinger evolution
T(H,to,t)lt/Jo)J=It/J),t~to, of the prepared state, which follows this
operation, is, by construction, the same, a common spacetime trunk. If in
particular I t/J) == I t/J0), i.e., if t = to, then the trunk is reduced to the
operation of state preparation alone.

Consider now the spacetime supports of the measurement processes
MA involved in this unity. The ensemble of these processes splits into sub­
ensembles Mx, My, ... of mutually "compatible" processes of "measurement
evolution" corresponding to mutually commuting observables.

Contrary to many very confusing considerations concerning "suc­
cessive measurements of compatible observables" (versus the projection
postulate) that can be currently found in the textbooks of quantum
mechanics, let us stress this; Each one measurement evolution from the

subensemble Mx is such that each one registration of a value Vj of the
"needle position" of the macroscopic device D x associated with M x
permits one to calculate, from the unique datum Vj, via a set of various
theoretical connecting definitions (6) aj = j~(Vj)' bj = fa(Vj), ..., all the
different eigenvalues aj, bj, ... labeled by the same index j, for, respectively,
all the observables A, B,... measurable by a process belonging to the class
Mx· This entails that for all the commuting observables corresponding to one
same class M x, the process of registration of a value of the "needle position"
of the device D x can be one common process covering one common space­
time support (no succession whatever is necessary).

Which is not possible for two noncommuting observables belonging to
two distinct classes Mx and My.

This is what is commonly designated as "Bohr complementary," nothing
else.

Now, this entails that, globally, the ensemble of all the factual prob­
ability chains (I") corresponding to a fixed pair (P( 'p 0), I t/J») constitutes a
unity, a meta-construct, with a branching, treelike spacetime structure. Let

us symbolize this treelike structure by !1(t/Jo, t/J) and let us call it a "quan­
tum mechanical probability tree" (in short, a probability tree). (Since all
the probability trees involving the same studied state vector I t/J) introduce
the same branch structure, carrying on top the same probability spaces, in
contexts where the distinction between the state vector or thL' inilially
prepared state and that of the studied state is not relev:1I11wc siI:ill a,SSllme
that 11//) == It//o) and the abbreviated symbol .f(I/') (':In 1)('11~;I'dI.

So Ihe pairs (1)(1/11))' II/I») definc, Oil 111l,\'nSl'llIhk IIj :ill IIii' '1":111111111
1l1cciIal1icai proh:lhility chains, :1 /'II/'Iili(ll/ ill 1'111/,;11,11111'II"'''' I /,,"i'll'i,

ICD

IS

IA

tJ.I

10

tJ.(P(1jfo»

Fig. 1. A quantum mechanical probability tree 3(P(l/1o), 11/1 »

•



A quantum mechanical probability tree is a remarkably comprehen­
sive metastructure of probability chains. Most of the fundamental algo­
rithms of the quantum mechanical calculus which combine one normed
state vector, with the dynamical operators representing the quantum
mechanical observables, can be defined inside - any - one tree
g-(P(ifio),lifi»):

embeddable into one single probability tree: there the embeddability into
one tree hits a limit. Several trees have to be combined. So a still higher

degree of complexity than that of only one probability tree is formed
and acts inside the organization implicitly reached by the probabilistic
conceptualization hidden inside the quantum mechanical formalism. The
quantum mechanical formalism contains implicit calculi with whole
probability trees.
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The probabilistic organization of the quantum theory, when it is per­
ceived in a globalized, integrated way, is found to consist of the ensemble
of all the probability chains of the type (1')-(1") partitioned in subensem­
bles of probability chains possessing a treelike spacetime structure, each
one of these corresponding to a pair (P( ifi 0), lifi») of an operation of state

preparation and a studied state. This partition is a partition also of the
ensemble of the factual elementary quantum mechanical chain experiments
which constitute the individual fibers of the quantum mechanical probability
chains (1'), (1"). So furthermore it is a partition also of the factual observable
extremities of these elementary quantum mechanical chain experiments,
namely the registered needle positions Vj E V A of the utilized devices D A .

The factual registered "values" Vj E V A' which seemed to float freely on the
surface of the observable (like nenuphar flowers seem to float freely on the
reflecting surface of a lake) expose now their fixtures to stalks of operations
and processes rooted into trunks of initial operations of state preparation.

How did we obtain this integrated perception of the probabilistic

organization of quantum mechanics? We have performed just an attentivc
analysis of the connections between Kolmogorov's standard fundamental

. _ and, finally, the whole quantum mechanical "transformation i probabilistic concepts (identically reproducible procedure, universc or

I', theory" from the basis of an observable A, to that of an observable B ~ elementary events, an algebra of events on this universe, a probability, i measure on this algebra), the main descriptors of the quantum mechanical
I c('/', b ) = '\' (I. .C(.I, a)' formalism (state-vectors, operators, eigenfunctions), and the ractual COllll-

II 'I' k L. kj '1" j' f h h ' 1 .. Th' b ' I

j , terparts 0 t e quantum mec amea wrItmgs. IS, ecause (d t)(, s/}(/('(,ti/l/l'

II . _ ' : ch~r~cteristics of the fac~ual counterpa!'ts ()f' the .quant1lm I1le('I/(~/~i{'((/
',I VA,B.Alu)-ajluj), andBlvk)=hklvk)' VjEJ, VkEK ,wrztmgs, brought forth, WIth a sort of mner necessIty, the probahillsllc

meta-construct with treelike spacetime support described ahove. But (his

(where J, K, are the index sets for the eigenvalues of A, B, respectively, and metaconstruct of distinct probability chains, though it has hecn produced

r1kj = <Vk I uj) are the transformation coefficients). ! by systematic confrontation with the standard probabilist ic concept s.
But as soon as either the principle of superposition or the orthodox ' transcends the abstract theory or probabilities as it now stands: So 1';11 Iht:

quantum mechanical representation of successive measurements COIlICinlo _ most complex basic probabilistic structure explicitly dcl'incd in the thwry
play, the corresponding quantum mechanical algorithms \.'l·;IS(· 10 he ! or probabilities is one probability .1'/'(/('(', Not evell the Ilotioll or ,,/1/'

il t•••••..• ;;';;';' __ ••• ;.i;, ..,,=~=.,=~,.~.~,==.±;,;,,;;.;;;;.j, "--';"i,;;;,; ••• :\ uuu ••..•.....••••••••• '-----'iiOoi'","" •• u. __ iMi'-'Oiioi,;,",-'-" •••••.• ,;,;;;;--••••• _ oioiioii ••••••••• = •._","- __ ~ _

- the mean value of an observable A, in a state with state vector
lifi), namely

<ifilA lifi), Vlifi), VA

the uncertainty theorem, for any pair of observables,

<ifil (LlA)2 lifi)<'/11 (LlB)2 lifi);? 1<'/11(i/2)(AB - BA) 11/1)1= (1/2)(h/2n),

V lifi) , VA, B

the principle of spectral decomposition (expansion postulate)

lifi) = I c(ifi, aJ luj), V lifi), VA: A lu) = aj Iu),

(c(ifi, aj): the expansion coefficients)

which permits one to calculate the probability density n( lifi), aJ via the
probability postulate

n(ifi, aj)= l<u;lifi)12= Ic(ifi, ajW

2.4. Integrated View



3.1. Probabilistic Meta-dependence via a Common Potentiality

3. TOWARD AN EXTENDED THEORY OF PROBABILITIES:
PROBABILISTIC META- AND META-METADEPENDENCE

probability chain is explicitly defined as a monolithic construct. A fortiori,

the concept of a probability tree, which connects several irreducibly distinct
probability chains, is not defined in the present theory of probabilities.

Are these novelties probabilistic "anomalies"? Inasmuch as they are
rooted into the present abstract theory of probabilities, it seems more
adequate to regard them as germs of a possible extension of this theory.

We shall now show that the concept of quantum mechanical probabil­
ity tree indicates the definibility, probably in quite general abstract terms,
of two new sorts of "probabilistic dependences," placed-with respect to
the Kolmogorov definition-on two hierarchically connected higher
descriptional levels, a metalevel where a probabilistic connection between
distinct probability chains appears, and a meta-metalevel where distinct
whole trees appear to be probabilistically related. These metaprobabilistic
qualifications appear to be intimately related with a radical distinction
between operations of state preparation and operations of measurement,
and, correlatively, with the differences and relations between the principle
of superposition and the principle of spectral decomposition.

These results, while they clarify and deepen fundamental features of
the quantum theory, point toward the necessity and the possibility of a
deepened abstract theory of probabilities: a theory of probabilities that will
incorporate explicitly the cognitive physical operations-with their
spacetime characteristics-by which, at the most fundamental level of the
action of extraction of knowledge, the observer produces the objects to be
qualified and obtains the very first qualifications of these objects.

1401Spacetime Quantum Probabilities

n(lj;, 17k) = FQM[n(~/, a)]

calculational arguments that quantum mechanics suggests a possible exten­
sion of the standard theory of probabilities. The concept of probability tree
permits one to strongly develop this constructive perception.

The quantum mechanical transformation theory (c(lj;, 17k)=
Lj akjc(lj;, aj), VA, B: A Iuj) = aj Iuj), B IVk) = 17kIVk), VjE J, VkE K, J, K
index sets, A, B two noncommuting observables, akj = < Vk I uj) the
transformation coefficients) permits one to entirely determine, from the
knowledge of the probability measure n(lj;, aJ from one branch of a
probability tree, any other probability measure n(lj;, 17k) belonging to
another branch of that same tree. Indeed the equalities I (c(lj;, bkW =
ILjakjC(Ij;, ajW, VjEJ, VkEK, are equivalent to the specification of a
functional relation

"maximal" because it consists in mutual determination

between the probability measures corresponding to the noncommuting
observables A and B. But the standard concept of functional relation
between two probability measures does not singularize the particular sort
of probabilistic connection between two probability measures introduced
by the quantum theory. Nor does it permit one to recover it fully, as
L. Cohen has shown ([Ref. 13, pp. 991-93). As it is stressed by the index
QM, we are in the presence of a specifically quantum mechanical
functional relation. What status can we assert for it?

According to the present theory of probabilities the concept of
"probabilistic dependence" is by definition confined inside one probability
space where it concerns isolated pairs of events. Two events are tied by a
"probabilistic dependence" if knowledge of one of these events "influences"
the expectations concerning the other one. So the relation n( Ij;, 17 k) =
FQM [n(lj;, aJ] of mutual determination of the probability measures from
a quantum mechanical probability tree can naturally be regarded as a
"maximal probabilistic metadependence":
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The fact that the quantum mechanical usage of probability measures
exceeds the "classical" theory of probabilities has already been perceived
long ago by several important authors (Mackey, (8) Gudder, (9) Suppes, (10)

Mittelstaedt,ClI ) Van Fraassen and Hooker, (12) etc.). But this transgression
is usually mentioned in negative terms: "nonembeddability" into a unique
probability space, of the quantum mechanical measures corresponding to
noncommuting observables, which is an "anomaly" that "hinders" a classi­
cal definition of a conditional probability for two incompatihle evenls. elc.).
Recently L. Cohen(13) has, on the contrary, shown by vny inl\·Il·:;ting

"probabilistic" because, though this determination is a certainty
about "influence," nevertheless it concerns probabilistic constructs;

"metadependence" because it concerns, not pairs of cvcn(s rrOlll
one space, but globally pairs of probability mcasures on entire algehras of
events, which, with respect to events, arc mctaenlilies.

Now, if this view and language arc accept cd. wltat 1t:ISjllsl ht't'n
named the probabilistic mdatlepentlcnce tldined hy lite qllanllllll IIIL:cltani­
c:iI Iransrorll1:ltion tltt:ory appt::IlS as J'1'11"I'lill,l~ 11/1' .I'llIdil'd ,1'1111/' II'ill1 ,1'1111/'

I I ~

lllii ...-" _....-.. no _n;' •••••• oi.i-""'''':i:~~~~1:¥''~;~;;,i ••• m,<>- ioi ~~oiii; "Iii"';;';" ••• _ ••••••= •••••••• iii,;,o,i;=:' Oiio •• oif'--·.Mii"-." om __ •• ;;i;,o,o,i _""' .';::'-.if 7~ ~
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vector 11//)from the common trunk of the tree. This state that stems from
a preparation operation P(tf;o) and then might have evolved accordingly to
some law IT{to, t, H) Itf;o) = Itf;), but that has never yet been observed, has
to be conceived of, in consequence of this lack of previous qualifications,
merely as a monolith of still nondifferentiated observational potentialities
that sets a genetic unity beneath the various incompatible measurement
processes of actualization of that or that particular observational poten­
tiality, leading to that or that actualized observable space (3'). Though in
quite different contexts, Bohm, (J4) de Broglie, (15) Primas, (16) as well as
other authors, have also explicitly stressed the multiple potential meaning
of the quantum mechanical concept of state. Here we reexpress it as
follows.

The probability tree of a studied state with state vector I tf;) is a complex
unity which, with respect to the observable manifestations of a microsystem,
possesses a "potential-actualization-actualized character."

The quantum mechanical functional relations F QM between the probability
measures from irreducibly distinct observable spaces--considered as
wholes-belonging to a same probability tree, reflect the genetic unity of
these spaces via the common observational potentialities captured inside
the state from the trunk of the tree. The quantum mechanical transformation
theory involves new probabilistic features that are neither probabilistic
"anomalies" nor mere numerical algorithms. They are a mathematical
description of particular realizations of probabilistic metaproperties,
brought forth by a growth of the probabilistic thinking that happened inside
the process of conceptualization of the microphenomena: a growth that
draws attention upon the necessity, at the most basic level of description
where no previously elaborated conceptualization is presupposed, to
represent and to study the cognitive operations by which the observer-who
necessarily exists and acts-produces the objects to be qualified and the
processes of qualification of these. Indeed, these operations themselves
possess physical characteristics, in particular spacetime supports, that entail
nontrivial consequences on the probabilistic descriptions constructed with
their help.

3.2. Probabilistic Metaproblems

The probabilistic metaproperties mentioned above, as soon as they are
perceived, involve certain probabilistic meta problems that will ha vc 10 he
explicitly considered, together with the reduction problem a nil II", ,II hn

problems raised by the probabilistic character of the quantum theory. An
example is this.

The passage from the monolith of observational potentialities labeled
by a state vector Itf;), to that or that process of actualization M A of that
or that particular observational potentialities contained in Itf;), involves
from the part of the observer an act of free choice of one among all the
possible measurement processes M A' In this sense the nature of this
passage is not "purely physical"; it is a phenomenon that depends also on
the observer's "free will."

The quantum mechanical transformation theory involves an intervention
of the observer's mind already before the final act by which a registered
eigenvalue is perceived by the human observer.

This introduces an anterior supplement to the so amply discussed reduc­
tion problem (Wigner's Friend, etc.). Indeed:

What is the relative frequency

n(MAN)

of the occurrence of a given measurement process M A once the state Itf;)
to be studied has been prepared? Obviously this relative frequency has to
be radically distinguished from the "conditional" relative frequency

[n(tf;, aJ/A]) == n(tf;, aj)]

of the occurrence of a given eigenvalue aj of the observable A, once the
choice of measuring upon Itf;) the class of observables compatible with ;\
has been made. It seems likely that the relative frequency of choice of a
measurement process M A' so n(M AN), such as it emerges spontaneously,
because it involves the observer's free will, simply cannot be defined at ;111

in a way that is stable, "identically" reproducible, so as to permit the asser­
tion of a probability "law" in the sense of the theorem called the law or hig
numbers. So this relative frequency cannot be inserted into the st rud un:
called a probability space. The concept of a probability spaee is wry
restrictive; it involves severe conditions of "identical" reproducihilily.

The space [U, T] where U is a universe of elementary events each 01
which emerges as the result of {first: [a realization or an operation
P(II/) = [P(II/o), T(H,to, t) 11//0)=11//)] which prepares a stale III') I,) 1)("

studied] ond afterwards: [a choice or a mcasurement process M , I: alld I
is all algebra of events Oil Ihc ulliverse lJ, might silliply nol hI" a
"probahili/.abk" space, if II\(, rl'ialil'l' Irl'lpIL'lll:Y01 Ihe ch()i!'L' 01;1 111\';";111",
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111','111l'III""~1:1M , is considered such as it emerges naturally in the mind of
111111III 11111111l1saver, i,e, (in the absence of any conventional constraint).
NilI\', II IllIs 1IIIIIprohabilizabie character is admitted, then, from the view­
1'"1111III Plllh:lhilities, it introduces a solution of continuity between the
1111111"111'111csl iliia l ions from the different observable branch spaces of a tree,

1\ Ulld 1IIIIIIIIl'olilparability of the probability measures from these spaces.
1'11i~,""I'IiISto wlilradict the quantum mechanical algorithms: As long as

WI' d., 1101 possess some definition for the conditional probabilities
111M ,N) :lnd n(MI/N), with [A,BJ~O, what COIlTentcan we assign to
IIII' :Isserlioll Ihat the measures n(Ij;,A)={n(lj;,aj)=Ic(I/I,aiW} and
11(1/1,1\) : n(l/l. h,,) = Ic(lj;, lhW} are connected in agreement with the
'111:111111111nll:chanical transformation relations c(lj;, bd = Lj (X k;C (Ij; , a;)? As
10111'.:IS w\' do not assert some definite ratio for the relative frequencies of
l:IIIl'q~l:IIL'e1)1'the two measurements MA and ME' how is it possible to
111:1kc slleh precise numerical assertions involving the relation between
the rdalive frequency of an event bk and the relative frequencies of the

cVCllis II,'?

I.lIhk in. (17) without detailing all the dimensions of the conceptual
silll:ll ion, has nevertheless perceived the necessity of some conventional
sllhslilulc for the otherwise unrealizable definition of a conditional prob­

ahility measure n(MAN), And indeed the quantum mechanical formalism
certainly docs involve such a conventional substitute: quite probably, a
decision of equipartition, n(MAN) = constant. V A (and V IIj; », in order to
"smooth out" the unpredictable effects of the free choices of a measurement
process, thus offering expression exclusively to the "objective" factors,
(A decision of equipartition can be stated in terms of "certainty," which,
up to normalization, amounts to the same: Once IIj; > has been created,
suppose first that the measurement MA follows certainly and calculate the
expansion coefficients C(I/I, a;), so the individual probabilities n(lj;, a;) =
1c(1j;, ai)l\ then suppose that ME follows certainly and calculate the coef­
ficients c( Ij;, bd, so the individual probabilities n( 11/1 >, bk) = Ic( 1/1, b tJ12; then
verify the assertion n(lj;, bk) = ic(lj;, bdi2 = ILj 'Y.kjC(Ij;,aJI2 involved by the
quantum mechanical transformation theory.)

But Van Fraassen and Hooker,(12) quite curiously, have formulated a

purely mathematical argument for the "impossibility" of a conditional
probability measure n(M jlj;), again without stating explicitly the
epistemological dimensions of the problem (this impossibility, however. is
necessarily relative to some presuppositions. and these IlIighl 1101possess
an unavoidable character).

Anyhow. Ihe preceding example shows Ih:ll III<''1";11111111111I"I'h:lllil';d
tr:IIISfol'lll;llioli Iheory, while it SllggCSIS:1 1)1I.·;·;il1k1'\1<'"'",," III IIII' I""II'l'pl
of prllh;lhili~;lil' dq)l:lIdl'IIl'l\ ill\'II"'I'~; 1"'11"1:1111,,'111.'1111111'qH"'ifil'

.III.

probabilistic problems that would have to be dealt with inside such an
extension.

3,3. The Germ of a Concept of Probabilistic Meta-Metadependence

3.3.1. State Preparations versus Measurements. The absence of an
integrated perception of the probabilistic organization which underlies the
formalism of the quantum theory not only hinders a clear understanding of
the novelties and of the problems involved by the theory, but furthermore
it entails insufficiencies inside the theory itself. The most important among
these stem from the tendency to confound the operations of state prepara­
tion, with measurements, that is, to mix up temporal orders which, quite
essentially, do act.

Absence of jlv1athematical Representation For the Operations of State

Preparation. In quantum mechanics as it now stands, the degree of defini­
tion of the operations of state preparation is much lower than that of the
measurement operations. Correlatively, the mutual characterization of
operations of state preparation and of measurement operations is very
imperfect.

The measurement operations are quite explicitly represented by
Hermitian linear differential operators and by a well-defined calculus with
these. The compatibility or incompatibility of two measurements has been
recognized and formally described, and consequences have been drawn
systematically from this. On the contrary, as far as we know, no clear-cut
and unanimously practised definition does as yet exist for the concept of
state preparation. A fortiori, the operations of state preparation are not
endowed with a mathematical representation clearly assigned to them.
They are not even systematically symbolized:

Quantum mechanics as it nOI\l stands does not specify a calculus with,
s/wl'i//cally, operations of state preparation, distinguished ji-OIn the calculus
lI'ilh measurement operations alld related with it.

The source of this situation can be associated with the Copenhagen
fl)1'I11l1hltionof the postulates of quantum mechanics which interlaces the
1'lIl1cepl of state preparation with that of measurement. Indeed, in the
('lIpl~l1h;lgen formulation of the postulates of quantum mechanics, certain
l'pl'l':llillllS III'St:lll: pn~I):lr:ltion til'l' derined, Thcse consist of a measurement
"l'lIll1lillll IV! I fill' ;111(·i".I'III';dlll"n~j.'.islr:llilln corresponding to some observ­
:1111.-1\ IIII' rill;tI ph:l.·;1'"III'!'.i.·;II;ltillll illcilldl'd sl1eh an evolution being
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Mcre contemplation of the figure representing a probability tree
11Iakl:s il ohvious that, by the very definition of the words, an operation of

I'J!' lilt' I"'''''',,,·s 1'1'/') whieh by reiteration bring rorth
II,,· '""d,,'d ·,lill,· \'ITI",. 1'//) :ire contained in :i spacctinll'

.1"",,,," .Ii 1'1'/'11 "I' whieh the temporal nll'"si,," jo,

If 'II " III!' 111\H'l'\~;l'S oj'II1CaSlIrcmcllt eV'IJllJlilili [\1" t\I'I'
lill \\1111 It 11\- 1I'IIt'111111111 prndlll"l\ l'espl'l'li\'t,!v, lIlt' ,.I".," ,nidi"
1'ltd11Ihilll\' "1'.11'1','. 11\.1/' I. 13;1. III]. l'k., ;111' "tllldlllld III

''I'''' ,"III'" d'''"IIII', 11/\. '/11, ./II!, ,/, I. ,'1,' "I II I,I. I, II,,·
1111111'"1111 ,'\11'11',1111\', 'I 'n.'/I 1(1.I'k ill" ",'\tl '''" III III

postulated (the projection postulate) to leave the studied system in a state

describable by the "normalized" eigenvector lu) of A corresponding to the
registered eigenvalue aj. (For simplicity, we do not singularize here the case
of an evolution corresponding to a complete set of commuting observables,
as it is usually done). Now, is this definition conceived to designate only a
subensemble of the ensemble of all the possible operations of state prepara­
tion, or is it conceived to exhaust this ensemble, so, to entirely absorb the
concept of state preparation into that of measurement? When one reads the

various papers that have been written on this subject, and quite particularly
the current textbooks, the answer is far from being clear. Anyhow, a
general distinct definition of what is to be called an operation of state
preparation, in contradistinction to what has to be called a measurement

opl:ration, is uniformly absent. The term "preparation," nevertheless, is
uniformly present.

Ilowcvcr, notice the following:

state preparation P(t/io) is a primary operation of generation of an object
for subsequent examinations, while the operations of measurement are

secondary operations of qualification of this object (Fig. 2). It jumps at
one's eyes that the two concepts of state preparation and of measurement

concern two essentially different phases of the development of any quantum
mechanical elementary chain experiment, i.e., of the emergence of any
quantum mechanical elementary event in the sense of probabilities. Two
phases placed at two different temporal levels of a tree (LJ t = to - t' for the
operation of state preparation and I'lt = tA - to for an operation of
measurement of an observable A) possessing essentially different cognitive
roles and which are both necessarily present inside any process of
emergence of a quantum mechanical elementary event in the sense of

probabilities. Any "measurement," by the very definition of the concept,
presupposes necessarily SOme previously produced state, thus SOme "opera­
tion of state preparation," deliberate or spontaneous, natural. While an
operation of state preparation presupposes nothing, it is by convention the

first operation that is considered, the origin, the zero of the considered

chain of phenomena leading to one quantum mechanical elementary event
in the sense of probabilities, aj = fA (Vj).

- Furthermore, in order to be able to specify a definite eigenvector
Iuj > of an observable A as being the "normalized state" in which the system
is left, it is indeed necessary to obtain a final information that singularizes
a definite eigenvalue aj, thus labeling observably the asserted state. But if,
for this aim, an interaction is produced that involves the state to be labeled

itself, then, in general, this state is destroyed. So, as is well known, some
substitute must be found ("nondemolishing" procedure) that preserves the

state to be labeled (as in the case of the Stern--Gerlach method for spin 1/2,
or as in the case of indirect identifications, by the registration of photonic
spectra, of electronic states bounded inside atoms). However, such sub­
stitutes cannot be found for any sort of measurement. Therefore the
category of measurements that can act as preparations of known states is
/1l'ry limited.

Correlatively, in a certain sense, the eigenvectors of most
quantum mechanical observables (of all the observables with continuum

spectrum, position, momentum, all the Hamiltonians corresponding to
lion bounded evolutions) simply do not accept, stricto sensu, normalization,
so t hey cannot r;J;orolisly play the role of a state vector also. This is

ClII'J'cnlly c,illed "the prohlcm of normalization" and is "solved" by
proving lI1al allY eigl:llveclor can be arbitrarily well approximated by a
('III'J'l:spol1dill)', ('i",I'lIdil11-11'111i;iI II1a1 is a normalized state vector. But it
SlTlIlS Vl'f'V;llI'k 1I':ild 111t1",'drtl /;'I/II,{ If !'o.l'flrllfrl' Oil 11!lp/'OX;11I0/;OIlS .
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formable on this result by which subsequently the result win be qualifiable.
The formalism of quantum mechanics permits one to envisage to
individualize a state of a micro system, to form it out of the continuum of
"reality," to capture it as a monolith of physically determined but as yet

entirely unknown observational potentialities, and to keep it available for
any future actualizing examinations, without strictly nothing presupposing
about "how" this state would appear under that or that subsequent
examination. Indeed precisely this is what happens each time an operation
of state preparation is performed that is defined by operational instructions
entirely independent of any measurement operation: Initially, the state
produced by this operation is devoid of any expressed definition of its own
(mathematical, or not), distinct from the definition of the operation of its
preparation. For instance, consider again the electronic state imagined
above, produced by passage of an arbitrary but definite previous state
through a screen with three somewhat extended holes in it; or imagine
some definite interactions which generate still nonidentified elementary
particles (thus afortiori still unknown states of these), Now, as announced,
the question is whether it is possible to construct a mathematical represen­
tation connectable with such a state.

Let us just label a priori by the signs It/Jo) and P(t/Jo), respectively, the
considered state and the operation of preparation that defines it. Since the
operation of preparation labeled P( t/J0) is instructionally defined, it is

known how to reproduce indefinitely the state labeled by the symbol It/Jo),
notwithstanding the fact that this state is still devoid of any description of
its own (not of its operation of preparation). So nothing whatsoever
prevents one from establishing experimentally probability distributions

n(t/Jo,A)={n(t/Jo,af)=Ic(t/Jo,afW} corresponding to this still non­
described state for as many quantum mechanical observables A as one
desires (an approach similar to that for the identification of unknown
nuclear potentials via experimental estimations of cross sections). This

mcans that, in the expansion It/J0) = Lj c( t/J0, Gj) Iuj) of the unknown,
researched state-vector It/Jo), on the basis of eigenvectors {Iuj)} corre­
sponding to any given quantum mechanical observable A, the real factors

II (111o, aJI from the complex expansion coefficients c(t/Jo, aj) =
1c'(l/lo,af) Ie/aU) can be determined experimentally.

What about the imaginary factors? Consider an observable A. Write
Ihe corresponding expansion in the more explicit form

1'/1" > = L ('/alil Ic( 1/1 0, ai)1 111)

Finally, when one considers the ensemble of all the conceivable
quantum mechanical states, in particular the free states, it seems quite clear
that-simply by lack of any connection with some measurement evolu­
tion-an infinity of states of which nothing whatsoever hinders the
preparability and which are currently considered in the quantum theory, do
not accept, neither rigorously nor even grossly, a description in terms of a
definite eigenvector of some observable. (For instance, produce, on the left
side of a screen with three somewhat extended holes in it, an arbitray but
definite electronic state; what is the state on the right side of the screen?).
The elimination of an these states would be a huge amputation of the

theory. This, no doubt, is why most authors consider that in general a
preparation operation is not also a measurement operation.

In these conditions it seems natural to try to establish a clear-cut

definition of the specificities of the operations of state preparation with
respect to the operations of measurement.

With this aim in mind, we consider preliminarily the following ques­

tion. Are there reasons, perhaps, that oblige one to work with a definition

of the operations of state preparation that is tied with the eigenvectors of
the quantum mechanical observables, notwithstanding the fact that such a
definition is doubly flawed, in the first place by a character of approxima­
tion that seems unacceptable in basic assumptions and in the second place

by obvious restrictions of the factual possibilities? This question will be
decomposed into two other ones:

- Is it perhaps impossible to associate a mathematical representa­
tion to a state that is physically preparable but is not tied with some

eigenvector? The answer win be found to be negative.

Then, for what other reasons did the physicists from the

( 'opell hagen school introduce the group of concepts constituted of the pro­
jcci i')11postulate and the definition of preparations by measurements? They
t'nlail1ly were not naive thinkers, so they must have felt some compelling
11101iV:11iOI1 that has to be identified and explicitly dealt with. A possible

npl:ll1:ilio!1 will appear later, in Sec. 5.

1'1,,' U",wlt (If AllY Operation 0/ State Preparation Can be Represented
/'1' 'I SI,II,' , ·atllr. The quantum mechanical formalism seems to involve a

1It,::::iI,iliIVwhich has never before been incorporated into the 1'01'111:11COI1­
,';(III,'li"ll .,1':1 physical theory. Namely. the possihilily 10 il/ili,iI/1' "ddilll.;"
:111"lllllv I,) h,' sludied hy an exclusivcly physic:1I 0IWI:lll"ll, III :1 :;lliL'lly

1'''111'('1'(11111way. a Pllrely I'actual W:IY. quilt' illd"I"'II,"'"II\' "I 1,,,lh (he
!-11"wlt-dp."ollh •. 1\'sllll prodlllTd hy this .'pn:III"11 :11\lllh.' "1"'11111"11"1'1'1'- Wlll'h' II/'" ' :111.1lit,· IlIlil/',llIllIl' LI,'IIIIS

t ,'dill
I' I

(8)

:11'1'1)(" k 110wn, while the
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(10)

<Vk It/Jo> = c(rjJo, bk) = ei[J(k) lc(rjJo, bk)1 = I. Tkj(A, B) c(t/Jo, aj), j= 1,2, ...

By the standard rules of the quantum mechanical calculus, we have then,
for each fixed k,

eiji(k) = (Vk I rjJo> IIC(t/Jo, bdl = [~ !kj(A, B) c(rjJo, aJJ/Ic(rjJo, bk)l,

k=1,2, ... (11)

- and the initial arbitrary choice made in (1) for the factors {eia(j)}).
Since this is achieved by the use of the conditions c(rjJo, bk)

LjTkj(A,B)c(t/Jo,aj), k= 1, 2, ..., imposed by the quantum theory of
transformations, what is called in this context the interference of

probabilities, Ic(rjJo, bk)12 = ILj Tkj(A, B) c(rjJo, aJ12, is ensured. This brings
into evidence that:

The iI?(ormation contained in the quantum mechanical representation of"

a state vector I rjJ0> does not exceed the constraints stemming from the

observable data brought forth by measurements (the real factors Ic(t/Jo, aj)1

from the expansion coefficients c( t/J0' aj) = ei,(j) Ic( t/J0' aj) I), on the one hand,
and on the other hand from the conditions imposed by the quantum mechani­
cal theory of transformations (the imaginary factors ei,(j)) which determinl'

the "intelferences of probabilities connected with the passage from the basis
of an observable A, to that of an observable B, [B, A] =1= 0."

Any mathematical representation associated to the initial label It/J 0> tha I
satisfies the two mentioned constraints is as good as any other one. These
constraints correspond to a whole family of convenient state vectors II/to>

(state functions t/Jo) of which a member can be found in the way indicated
above.

Now, once the process of construction of a mathematical representa­
tion, by a state vector, of the designatum of the a priori introduced symbol
IrjJo> is closed, from that stage on, it can be admitted by induction that
each time that the same operation P(t/Jo) of state preparation will be per­
formed, its result will admit mathematical representation by the same slale
vector It/Jo> already constructed.

We conclude that any physical operation, that can be performed Oil a
microsystem and is specifiable by a definite set of instructions permitlillg
one to reiterate this same operation an arbitrary number of times, produces
a state of the microsystem that can be represented mathematically, alld
thus can be studied inside the quantum theory. (This corresponds to whal
is called a "pure" state. Obviously, the meta-case of what is calbl :I

"mixture" can be treated in a similar way.)

The quantum theory involves the possibility of' a sor( oj" sl'll~or,l',I/lli::i/l,I:
dl'sl'riptional dynamics that starts inside pure factuality, lI'itli 1/-{'OI/I"'f'(IIIt!,

s(rictly operational (instructional) definitions (c!l'terlllii/I/tio/ls) oj" (lit' s(/lt!il'"
.1'(1/[1'.1',illpolpil/,!', 110 ('oll(,l'f![/lali::.ed qua/iji'('atiolls II'//I/(I'P('/', IIfll[III'II/llfit'lt!
dl',\'l'fif'tiolls I/llt! f'n'di('(iolll/l Ifl/I/lijfl'atiolls 1/11 ('OIl(I',V(/IIt! \':111 "1'

l/s,\'(!I'il/(I'd rl'lrll;lI"liVl"lv (" (11/',1'/' il/s[rl/('tiol/I/I de/llli[iol/s,

This is pl'lIh:lhl\' IIIit' III' lilt· IlIlIst IIrigill;1I ;IIHI ill'lH1rt:l1l1 I'1I111'I'plll:l1
illlllll':llillll~; illllll.!I1.,.·.! 1111111111III\' I hI' 1111"'1\1;111111111Ilil'III'\':

(9)

,/;/(1/1". /'1 I: ,',OIII'I'llllllg

: I 1'1 II'". ", II ,/111/'". II, ) :

c(rjJo, bk) = eijJ(k11c(rjJo,bk)1

II/tO> =I eiji(k) lc(rjJo, bk)llvk>
k

all the experimental data [1c(1//o• h, )1

the observable B; ,III Ihe experil11l~l1lal .1;11;1
cOllcCl'llillg Ihe ohserv<lhiL: ;\;

where

that determines the complex factor ei[JiI,) corresponding to that k, con­
sistently with the previous arbitrary choice of the ensemble of imaginary
factors {ei,(j)} and with the experimental datum Ic(t/Jo, bk)l. Thus we can
determine the ensemble of factors {ei[Ukl} for the observable R in <Iway
that is consistent by construction with

where the T":j(A, B) = (vklluj>' k = I, 2, ..., j= 1,2, ..., are the coefficients of
transformation from the basis of eigenvectors of A to that of B. Thus, for
each fixed k (anyone), the quantum theory of transformations yields a
separate condition

ensemble of real numbers {Ic(t/Jo, aj)l} has been established experimentally.
Let us make an arbitrary choice of an ensemble of factors {ei~(j)}. The
expansion (8) is then defined. Thus it associates now to the symbol It/Jo>

a first mathematical representation where the numbers c(t/Jo, aj) =
Ic(t/Jo, (lj)1 ei'(j) accept-consistently with the mutual orthogonality of the
eigenvectors of A--the definition c( t/J0, aj) = (uj It/J 0 >. This representation,
by construction, is consistent with the experimental data Ic(t/Jo, aj)1 =
In(ljJo, aj) concerning the observable A. Furthermore, it permits one now
to determine consistently the imaginary factors {eiji(k!} corresponding to
any other observable B that does not commute with A. Indeed, the expan­
sion for an arbitrary observable B, [B, A] =1= 0, can be written as

L
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tion.

It marks the extreme limit of operationalism.

Quantum mechanics, only implicitly but quite essentially and for the first
time in the history of thought, incorporates this limit into a formalization.

But when, in particular, an operation of preparation is defined by a
measurement evolution, this innovation remains non utilized and thus

hidden: While in the history of a state of which the operation of preparation
is not tied with some measurement evolution there necessarily exists an
initial stage when this state was devoid of a known mathematical represen­
tation, when, at most, it was only a priori labeled by a symbol, in the
particular case of the states prepared by a measurement evolution such an
initial stage is lacking. The state vector is known in advance to be a definite
normed eigendifferential that approximates arbitrarily well a corresponding
definite eigenvector. This entails that:

A state prepared by a measurement evolution emerges endowed with
certain predecided (thus known) observational qualifications.

For instance, if it is known that the result of the preparation of a pure state
can be represented by some given eigenvector luj) of a dynamical observ­
able A, then, ipso facto, it is also known that successive (nondemolishing,
etc.) A-measurements operated on this state would produce reiterated
registrations of the corresponding eigenvalue ai of A, which is a predeter­
mined observational qualification of the prepared state. So the fact that in

general an operation of state preparation can be freed of any dependence
on predetermined qualifications remains inapparent.

It might seem that this possibility is irrelevant. But in fact it con­
stitutes a loss of seminal potentialities of description: We have shown in
other works (2~4). (22) that it is very fertile to introduce independent represen­
tations for the operation by which is produced the object of a description,
and the operation by which this object is examined and qualified.

It is strikingly paradoxical that precisely the Copenhagen school, the
champion of operationalism, has introduced a definition of the state prepa­
rations that-inasmuch as it is not transgressed by some generalization­
hides the remarkable fact that the quantum theory permits one to reach
and to represent explicitly the extreme limit of operationalism. The reason
that motivated this definition will be interesting to identify. This will be
done in Sees. 4 and 5. As for now, let us examine just below how the
distinction-or not-between preparations and measurcmcnts. is related
with the distinction-or not-between superpositions or stale Vl'l.:llIrsand
spcctral decompositions of a statc vector.

.1. .1.2. SUIH.'qlOsitiolls of Several Stall'S VnslIs SlltTflll1 I)t't'UlIIJlIISitiuIlS

of Om' Stall'. Tile kehk: 11111111alilidividll;!lI/;IIIIIII III '.1111"III"llIllillillllS

~

and measurements, tied with a fluctuating and feeble distinction between

state vector of a microsystem and eigenvector of an observable, entails an
insufficient distinction also between the principle of superposition (dis­
cussed mainly by Dirac) and Born's principle of spectral decomposition
(the expansion postulate). Indeed, though these two principles have been
introduced independently of one another, the spectral decompositions of a
state vector on .the basis of eigenvectors determined by an observable A are
quite currently designated as "superpositions of eigenstates of A." The two
concepts tend to merge into one another inside the moulds of a relaxed
language. However:

A spectral decomposition 11jI>= Lj c(ljI, aJ luj) possesses the followingcharacteristics.

- It is a representation that is relative, by definition, to someobservable A.

- The expansion coefficients c(ljI, aj) are necessarily complex
numbers (if they were not, the "interference of probabilities" via transfor­

mation to another representation, an essential feature of the formalism,
would disappear).

They are in general time-dependent in the Schrodinger representa-

- The summed eigenvectors Iui > of A, in general an infinity, even a
continuous infinity, are all involved, by definition.

- They are independent of time.

- They are in general not normed, and furthermore not nor-
malizable strico sensu.

They are mutually ortogonal by definition, (Uk I uj) = 0, V(k =Ie j).
Concerning "interference of probabilities":

* In consequence of the mutual orthogonality of the summed terms,
Ihe scalar products (ui 11jI) with individual eigenvectors luj) yield one­
term results so that for the individual probabilities n(ljI, aJ we have the
olle-term expressions

n(I/I, ai)= l(uilljl)2= Ic(ljI, ajW (7)

wilicil shows til,' ahst'lIt,t' or "illll'lo/l'n'II('(' ollhe prohabilities" inside the

!'t'/I!'t'St'lIltlli,," Il'ilh /"-,\1'1'<'1 III Ih,- o Ill' II!JS(,I'I'IIh!('A ilself' to which the
I'ollsidn'I'd " 1/"111.1'11'11 f', 1,-/,lIi,',·,
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n(I/;"".\,) = I<ii(\\) II/I"")12 = 1)'II(c5(x- xJ Itf;a) + Ab(c5(x -xJ ltf;b)12

I~"I ' II/I) \, II' I I~,.I" It/I ,,(.\"j) 12

* When one considers, for a superposition state vector, the
interference relative to the superposed state vectors that concerns the

position observable A = X, then-if the spatial supports of the superposed
state vectors are not disjoint-the corresponding form of the type (12)

n(tf;ab, aJ = i <uj I tf;ab)12 = lJ.a<uj I tf;a) + Ab<Uj I tf;b)12

= 1).aI21<uj ltf;a)12+ !)'bI2 (uj ltf;b)12+2 Re{(Aa)(Ab)*

x (uj I tf;a)(uj I tf;b)*}] (12)

This is a sort of interference of probabilities where the quantum mechanicIII

theory of transformation from the basis of one observable to the basis of'

another observable is not involved, an interference that emerges "directly"
with respect to the summed state vectors, for anyone observable. So we shall
call it "interference relative to the superposed state vectors," and we sha II

distinguish it radically from the interference relative to incompatihlc
observables.

(12' )I ! H,': I ,j" IU,Y" '/1) \ ,11//,,(\,)*:1

< tf;b I tf;abc...), ...acquire one-term expressions < tf;a I tf;abc...) = Aa,

< tf;b I tf;ahc..) = Ab, etc., analogously to what happens in the case of a spec­
tral decomposition for the products < uj 1 tf; ). But notice that in this case, in

contradistinction to the products <ujltf;)=c(tf;o,aJ=Jn(tf;,aJ, the
values of the "corresponding" products < tf;k I tf;ab,...) = Ab k = a, b, C, ... do
not possess a probabilistic significance),

- Concerning "interference of probabilities":

* The scalar products <uj I tf;abc.> with individual eigenvectors Iuj)

from the basis of an observable A do not have a one-term expression; they
have a multi-term expression <uj I tf;abc... ) = Lk Ak<uj I tf;k), k = a, b, c, .... So
when the square modulus is calculated in order to estimate the correspond­
ing probability n( tf;abc,.. ' aj), an "interference of probabilities" appears no

matter whether yes or not the superposed terms Itf;a), Itf;b), Itf;c)'" are
orthogonal (insofar as these terms are not themselves elements I uj) from
the basis of A, which can happen either in the case of a discrete spectrum,
or approximately). For instance, for a superposition state vector with only
two terms, the elementary predictional probabilities concerning the elemen­
tary outcomes aj for an observable A acquire the well-known "interference
form"

1

tion.

+ [interference terms involving all the pairs of products

Tkj(A, B) c(tf;o, aj), TjdA, B) c(tf;o, ak)]

=I ITkj(A, BW Ic(tf;o, ajW
j

They are always nOr/ned.

In gC!1crlll /1/('.1' IIrc nnt 1//1111/11111' (11'/11".1;(1/1,11 11111""'\"'1. whell

III p:lrliclilar they arc nrtllogoll:lI. 111,' ·;,';11;11 1'111.1110'1', "/1" II/"Ii"

This is an abstract sort of interference which is relative to a pair of noncom­

muting observables (A, B) and which, though it entails certain consequences
(as well as many false interpretations, for instance in Bohm(14)
pp. 384--386), is devoid of a directly observable counterpart: The square

roots c(tf;o, aj) of all the values of the probabilities n(tf;, aJ of the elemen­
tary events aj emerging when a measurement of the observable A is per­
formed on a state with state vector I tf;) "interfere" abstractly, numerically,
in the value of each probability n( tf;, bd of an elementary event bk that might

emerge if a measurement of the other observable B that does not commute
with A were performed on that same state. In what follows this sort of
abstract interference by transformation from a representation A to another
representation B that never coexists with A, will be called "interference

relative to incompatible observables."

On the contrary, a superpositIOn of' states Itf;ab"..'> =

)'a I tf;a) + )'h I tf;b) + It, I tf;,,) + ,.. possesses the following as if opposed
characteristics.

- It is a representation not tied with some particular observable.

- The coefficients of linear combination ;'e" ;'b, ;.a ... can relevantly be
chosen to be real numbers. Nothing in the formalism interdicts that.

-- They are time-independent.

- It is permitted to superpose an arbitrary number-usually a small

number-of state vectors Itf; a), IV; b),,,,

They are in general tirne-dependent in the Schrodinger repn.:senta-

* While by passage to another basis corresponding to another
observable B #- A that does not commute with A, an "interference of

probabilities" does appear:

n(tf;, bk) = Ic(tf;o, bk)!2 = I ~ Tkj(A, B) c(tf;o, aJI2
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is associated with the so amply discussed interference patterns in the physi­

cal space, directly observable on the domains where the spatial supports of
the summed state vectors overlap. In this sense the interference relative to

the superposed state vectors, in contradistinction to the interference relative
to incompatible observables, is not an abstract interference. The possibility
of such observable interference patterns disappears only if the spatial

supports of the superposed state vectors are all mutually disjoint, in which
case (12') acquires the degenerate noninterferent (but still multi-term) form

The mutual specificities emphasized above do not in the least manifest
an identity betwecn spectral decompositions of one state vector and super­
positions of scveral state vectors. Quite the contrary, they manifest a sort
of opposition. In particular, they reveal a splitting of the central concept of
interference of probabilities.

Now, where do the observable effects tied with superposition state
vectors stem from? In what follows we show that they are essentially

related with a "multiple structure" of thc operation of state preparation
that produces the state corresponding to the considered superposition state
vector.

Consider for simplicity a two-term superposition state vector

tied with a state preparation P( Ip "h)' If the state I t/J,,) of S is considered
separately, it stems from some operation of state preparation P( t/J J. If the
state I t/J b) of S is considered separately, it stems from some operation of
state preparation P(~f h)' If now the superposition state vector I t/J "b) of S is
considered, it stems from some operation of state preparation P(t/J"h)' again

only "oneil operation of state preparation since it produces the "one" pure
state I t/J "b) that entails its own specific quantum mechanical predictions.
However, the operation of state preparation P( t/J ab) somehow is conceived
to "depend" on the two other operations P(t/JJ and P(t/Jh) that are tied
with the two state vectors It/J,,) and It/Jh) that would have been produced

by these operations, respectively, if they would have been realized
separately. Implicitly but quite essentially, these other two preparation
operations are supposed to be

mutually distinguishable

realizable separately

('f}/Ilhil/ilhll' so as 10 conslillilc 1'11','111,,/ ""lit''' ,,111,'1 "1"·I:lli'lli.

dislincl 1'\'(1111 holh 1'(lfi,) alld 1'(1/1/,) :llId n·;ili/:iI,lt· "II ,'1/,' 111"1'1'111" IlIili:iI

state of the studied system, associated with an initial state vector I t/J i) of
that system.

So-quite systematically-in the case of a superposition of state
vectors we can write symbolically

(f: some function)P(t/J"h) =f(P(~JJ, P(~/b))

In its last essence the principle of superposition is a statement, not
directly about state vectors, but, more fundamentally, about a-past­
operation of state preparation.

But these two different operations of state preparation P( t/JJ and P( t/Jb)

have not been realized separately. They have been realized only "together,"
"inside" the global procedure P( t/J "b)' So the states represented by the
corresponding state vectors It/J,,) and It/Jh) also, which could have been
produced separately via the separate realizations of the operations P( t/J a)

and P(t/J b)-which entails that they are normed-have not been realized
individually via P( t/J ab)' They are only conceived of separately, in relation
with the one state vector I t/J "b) corresponding to the one realized global
operation of state preparation P(t/J"b) (realized either by the observer or by
some "natural" substitute of the observer, as in the case of atomic states

of an electron). They are conceived of and explicitly represented in the
mathematical expression (S) of I t/J "b) where they play the role of elements

of reference in the calculation of any individual probability n( t/J "h, aj): as
can be read on the relation (12), n(t/J"b' ai) is a function of n(t/J", aj) and
n(t/Jb, aj). In particular, when one considers the position observable A=X
and the corresponding presence probabilities, this reference concerns
patterns of impacts observable in the physical space. The algorithm (12)
applied to the calculation of an individual presence probability n(t/J"b' Xj)

as a function of the individual probabilities n( t/J0' xJ and n( t/Jb, Xj) permits,
via (12'), a quantitative comparison between

- the observable pattern of position registrations corresponding to
the realized state represented by the descriptor I t/J ob)

- the patterns that would be produced by each one of the states
represented by the descriptors I t/Ja), I t/Jh) if these states acted (or effectively
do act) separately on the device for the registration of eigenvalues of the
position observable.

What is design:lkd hy the term "interference of probabilities" as applied to
Oh,I'('/'/'II/>/I'{11i1/,'W.\' or {IOsilio/l registration, is precisely the difference
hrollghl 1'111111 I", llii:: "IlIllp:irison hetween the two patterns corresponding
sep:lr:!I"I,\' I•• 11/,,, ' :llId 1'/'" " :111" IIll' p:!tkrn corresponding to II/I",,): One

(S)

(12/1)

!t/J"h) == A" It/Ja) +),b lip b)

n(t/Jab, x) = I,U211p,,(XJJ2 + 1)'bI21t/Jb(Xj)12

~
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sees how such patterns are essentially tied with the "multiple" structure
P(l/1ab)= f(P(l/1a), P(l/1b))' (f: some function) of the involved operation of
state preparation.

And notice that, remarkably, overlapping of the spatial supports of the
superposed state vectors at least somewhere in spacetime (if time is left to
increase indefinitely) is somehow related with a "multiple" structure
P(l/1ab)= f(P(l/1a), P(l/1h)) (f: some function) of the operation of state
preparation. Here comes somehow into play (HOW?) the fact that in a
superposition of states the combined state vectors arc time-dependent,
while the coefficients of linear combination are not. In this context,
L. Cohen's criterion (18) for identifying the "decompositions" of a state vector
into "meaningful parts" by estimations of standard deviations of "currents"
(p. 1470) might appear to be very relevant inside the deepened development
of the de Broglie-Bohm model that is introduced in the last section of this
work. (However-imperatively-one should speak then of superpositions
of independently preparable state vectors, not of "decompositions in
parts." )

We summarize in general terms.

In a superposition representation (5), the unique physically realized
operation of state preparation is that one symbolized by the notation P( 1/1ah.J,
of which the unique result is that one symbolized by the global notation
11/1 ab..)· This-past-operation of state preparation P( 1/1ab.J somehow
involved, "contained," two or more other operations of state preparation,
P( 1/1a), P( 1/1h),,,,, mutually "distinct" and which can he realized separately.
The state vectors 11/1 a), 11/1h),,,,, corresponding to the states that would have
emerged if P(l/1a), P(l/1h)'"'' \I'ould have been accomplished separately, are
explicitly specified inside the formal expression of the state vector 11/1 al>..)
corresponding to the unique physically realized state produced by P( 1/1ab.J.
There they play the role of elements of reference incorporated into the math­

ematical representation: It is with respect to them that there emerges a
concept of intelference of probabilities that is tied with patterns of position
registrations directly observable in the physical space.

This is in strong contrast with what is involved by the expression (0)
of a spectral decomposition. There the representation does not designate
observable effects of a particular type of structure of the past operation of
state preparation of the studied state vector. What is represen1ed in a spec­
tral decomposition of a studied state vector lip) is the ohserv:1 hie clTec(s of
a future operation of measurement of an observahle !\ pnrorllll'd 1111111/)

(Fig. 2). The representation is given in !l;nns or Ih,' /'/'''/''('/1''/1,1 or IilL:
considered state vector 111/), onto :111 IIII' :11\';11;11'1\'1/1."111",,'1111:;11/, >,

Vir'./, or Ille considered ohservahle !\, SII,'II ;111('il"'III,','11I1 11/,' 1I""IIrdill).'.

-""--

to its very definition by the equation for eigenvectors and eigenvalues of
A--is not in general a descriptor tied with a state producible by some
specific operation of state preparation. It is only part of the mathematical
representation of a framework for the qualification of quantum mechanical

states, a }i'amework introduced by the observable A. Namely, the eigen­
vectors lu), VjEJ, define a family, specific of this observable A, of "direc­
tions of qualification," of "semamic directions" (unidimensional, in the
absence of degeneracy) each of which is associated with an observable

eigenvalue of A. In general these semantic directions are only tangent to
the Hilbert space that contains the state vectors 11/1); they are exterior to
this space, They are images of elements endowed with a primary definition
only inside the dual of the Hilbert space of the system, By a function
(involved in a linear functional on the space of the states) the eigenvector
lui) corresponding to an eigenvalue ai of an observable A qualifies some
feature (which one exactly?) of the same global factual situation that is also

qualified by the eigenvalue ai' As to the eigenvalue ai itself, it qualifies the
individual observable outcomes Vi' with fA( V) = ai' of the elementary
quantum mechanical chain experiments which, in their turn, via the corre­
sponding probabilistic metaqualifications 11(1/1, a), qualify globally what is
called a "quantum mechanical state" and is represented by a state vector
11/1), We sum up:

A spectral decomposition 11/1) = Li c(l/1,ai) luj) is referred to a future
operation of measurement, upon the studied-already prepared-state vector

11/1), of an observable A. Each eigenvector lui) of A is a descriptor of a
particular qualification }i'0111a whole framework for qualification introduced
by A, a framework that is defined on the whole space of the state vectors.

Though a descriptor luj) is utilized for calculating the probability of an
olltcome IA( Vi) = aj for any given state vector, there is nothing probabilistic

in this descriptor itself, The descriptor lui) is tied with one eigenvalue ai (in
a nondegenerate situation), so it points toward an essentially individual
predication. There is no rcason whatever to require normability for the math­

ematical descriptor III) (like for the state vectors 11/1)which, by definition,
genemte probability measures), Quite the contrmy, this would simply be
grossly inadequate }i'O/ll a semantic point of view,

Correlatively, the spectral decomposition with respect to one observable
A-by itself-entails no intelference of probabilities, neither observable nor

i/hs/r{Jct. An interfcrence of probabilities tied with spectral decompositions
i/rises IIlIfl' hI' tl'lll/sfiJ/'lIli/tionfrom the basis of one observable A to the basis
11/ III/lithe,. 01>,\'('/"'1//>/" II tlllil dill'S 1/01 cllmml//e with A.

Si Ill'l~ f h\' ('il',I'11\",,'1 "I:; :11'1' d\'sni pi ors wi Ih individual meaning, the
"pl'l1lll"III" III "''11111111/1111''".,1' Ih\' \'i}!.\'lIv\'ctnrs or ohsel'vahles with
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continuous spectrum is a false problem, Thus the "resolution" by the con­
struction of state vectors yielding approximated normed representations of

eigenvectors is a resolution without a corresponding problem-just
noxious mathematically generated semantic fog that masks under a veil of

superficial uniformity a radical solution of continuity, in the space of the
concepts, between eigenvectors and state vectors. Even the standard theory
of probabilities rejects (implicitly of course) the confusion between eigen­
vectors and state vectors, This, for instance, is illustrated by very interesting
remarks by L. Cohen [Ref. 13, pp,991-992, Eqs. (54)-(59)]. In order to
understand fully the veritable problem involved in the quantum mechanical
description of the measurements, in order to formulate it in more analyzed
terms and to form a veritable answer to it, the conceptual difference

between the designata of the eigenvectors and those of state vectors has to
be recognized as essential, to be specified, and to be set at the bottom,

In short, the code is in essence this for distinguishing between the
factual conterparts of, on the one hand, the superposition writings and, on
the other hand, the spectral decompositions:

A linear combination of an arbitrary number of (in general) time­

depending and mutually non orthogonal "state" vectors of a system S, all
normed, that is not relative to some observable and that can, in particular,
be relevantly written with real coefficients, can be regarded as: the formal
expression of the result of one operation of state preparation somehow
"depending" on (referrable to) other (two or more) operations of state
preparation, individually realizable but not individually realized, and which
are such that if they were individually realized, would produce the states

corresponding to the linearly combined state vectors.

A linear expansion of one normed "state" vector, on the basis of
all the mutually orthogonal and (in general) infinitely numerous and non­
normalizable "eigen" vectors of an observable A, with complex and time­

dependent expansion coefficients, can be considered as: a formal expression
of the qualification of the physical state represented by that state vector,
inside the framework for qualification of any quantum mechanical state

introduced by the observable A; namely, a probabilistic qualification of the
state by the probability densities Ic( 1/1, ajW = 1< Uj 11/1) 12 of the observable
outcomes fA( Vi) = aj of the quantum mechanical elementary chain
experiments performed with that state and with the measu rement evolu-
tions M A for A.

[n particular, it can happen that t he sperlr\llll "I IhI' l'"nsidcrcd
obscrvable A be discrete (ilamiltonian 01 a 1"'IIIIlI<'<I~;I;III' '" a kinetic
momentum), This entails then ;111 i,knlifi";lli"ll "I ,'a,'h "1)'."111""'("1', wilh a
slalG vectpr 111' a prcpar;lhlc slall' (whi,'h illl ••I""h 111\'11 Id',•• II ,I<'finill' fillill'

••

norm for the eigenvcctors, as well as mutual orthogonality, and inde­
pendence of time for the ensemble (a discrete infinity) of these "eigenstate
vectors"). Nevertheless, even in these particular situations which introduce
for each eigenstatevector a cumulation of two distinct roles, the conceptual
difference still quite fully subsists between the designatum of a superposi­
tion of several eigenstate vectors on the one hand (way of preparing the
superposition state vector), and on the other hand the designatum of a
decomposition of a state vector along the whole infinity of eigenstate
vectors from the basis of eigenvectors of the considered observable (way of
qualifying that state vector), And the existence of this difference continues
to be even formally disclosed by the subsistence of the possible relevance,
or not, of real coefficients,

So the code explicated above always avoids confusion between super­
positions and spectral decompositions. (The removal of this confusion
might clarify the significance of conceptually rather obscure perturbation
methods used for the calculation of the spectrum of energy of quantified
systems, etc.) But resort to the code ceases to be necessary as soon as one
is in possession of the concept of a probability tree. Again, by the simple
contemplation of the figure that represents a tree, it becomes obvious that
the superpositions concern the primary operation P(1/1o) of generation of an
object for subsequent examinations, while the decompositions concern the
secondary operations MA of qualification of this object (Figs. 2 and 3A
(p, 1440)), Again it jumps at one's eyes that these two concepts concern
essentially different phases of the genesis of the quantum mechanical events,
placed at two different temporal levels of a tree, imbedded in different
spacetime domains and possessing essentially different cognitive roles,

3.3.3. The Germ of a Calculus with Whole Probability Trees
(Probabilistic Meta-Metadependence). The quasi-confounded treatment of
superpositions and of spectral decompositions hides the important fact
that, in a certain sense, a superposition of states-but not also a spectral
dceomposition--involves a germ of a calculus with several probability trees,
giohally considered.

Consider a state vector I t/t) wich is instructionally defined by the
specification of only one preparation procedure P( t/t), Then the probability
Illeasures from the observational spaces (3') of the corresponding probabil­
ity tree arc completely specified by reference to the only one state vector
II/I> tied with the IllIiqllC operation of state preparation P(1/1) (for simplicity
wc suppose nH':i~;III'l'lIlent~;dircclly Oil the prepared state It/t), i.e., we
,'()nsidn III\' ":ifli"ld:!1 (':!S" I I" n, 1'//) == 1'//0»), For example, in (3')A

1IIl' 1IIl'aSllll' 1111/1, ,I, I I:; ,'II 1<'11IIIhI<' IIn III\' hasis or (he postulate (2),
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n(ljJ,aj)= l<lIj 11jJ)12, by making use of exclusively the state vector 11/1). But
the situation changes if we consider a superposition state vector

IIjJab) = A.a IIjJa) + Ab IIjJb)

(as, for example, in the case of a Young interference). Then-physi­
cally-the corresponding preparation P( IjJab) still introduces only one state
IIjJab), so only one probability tree. Nevertheless, as has already been
stressed, the probability measures from the observable spaces (3') of this
unique tree are now calculated by reference to, also, the two state vectors
IIjJa) and IIjJb) from the mathematical expression of \1jJ ab ). This happens
algorithmically, via the combination of

_ the additive quantum mechanical representation of the state 1 ~Jah)

by a superposition writing

the spectral decomposition writings.

- the probability postulate (2).

Indeed, when accordingly to (S) and (2) the measure n(ljJab' ai) will have
to be calculated by the use of the relation (12): n( IjJab, aJ = 1)'a12 1< Uj IIjJ a> 12

+ \Ab12 <Ui IljJh)12 + 2 Re{ (Aa)()'b)* <Uj IljJa><Uj IljJb>*}J (or in particular
(12'): rc(ljJa/" xJ = lAY IljJa(xjW + !)'bI2 \ljJb(XjW + 2 Re{(A)(A.b)*

IjJAxj) IjJb(Xj)*}]), three probability trees are--globally-brought into play,
namely: The unique tree ff(l/1ab) physically generated by the unique
physically realized preparation P( IjJab), and furthermore the two trees
ff(ljJa) and ff(ljJb) corresponding to the two preparations P(ljJa) and P(ljJb)

on which the preparation P(ljJah)=f(P(ljJa), P(ljJb)) "depends"--considered
separately-which have not been realized individually, but, being reflected
in the writings by the specification of their possible individual results IIjJa>

and !IjJb >, act there as a conceptual reference. In fact what is brought
into play is a structure of three mutually consistent rules of "formal

composition," namely the rule of composition of:

_ The reference preparation operation P(1jJ a) with the reference

preparation operation P( IjJb):

Some definition of the function f(P( IjJa), P( IjJb)) = P( IjJab) and of its physical

counterpart are sllpposed to "exist ": this supposition in fact constitutes the

fundamental principle of superposition. However, this hilsic deflnilion is nol

spelled out inside quantum mechanics as il nOlI' Slill/d.I'.

The reference state vector \1/1,,) correspolldill).', III IIII' 11I'l~paration

opcr;ltioll 1'(1/1,,), with the refcrcncc Sl;ik Vl'\'lor 11/'/, 'l'I1II":'I',""liIlF, to thc
prep;lralion operation 1'(1/1/,) (the ;l\ldilil'\' "d,' IS))

.......•••.....

- The corresponding reference observable probability measure
I)'a<ui II/1a>12, with the reference observable probability measure
IAb<Uj IljJh>/2 (the quantum mechanical algorithm (2 + S) = (12)).

Globally, what comes here in implicitly is a complex algorithm of
formal composition of the two only conceived reference-probability trees
ff(ljJa) and ff(ljJb)' such as to yield

by a sort of "probabilistic dependence" defined between entire trees

precisely the result postulated by the relation (2) for the probability
measures from the unique tree :Y(ljJab) which is physically realized. Such an

algorithm amounts to endowing the mathematical representation assigned to

each level of the unique physically realized tree (operation of preparation,

prepared state vector, observable probability space) with an incorporated

reference to the corresponding level of the two other, only conceived trees.

Obviously, such a representation, endowed with such a reference,
transgresses essentially the concept of one probability tree; it involves
certain meta-qualifications with respect to the qualifications which can be
expressed inside the nonreferred representation of one single tree. We are
here in the presence of a probabilistic meta-metadependence with respect to
the present standard concept of probabilistic dependence (since the quan­
tum theory of transformations involves already-inside a unique tree-·a
sort of probabilistic metadependence with respect to the probabilistic
dependence in the sense of the theory of probabilities as it now stands),
Only if this probabilistic meta-metadependence, globally considered, is
taken into consideration also, does it become possible to try to encompass
the whole significance of the quantum mechanical principle of super­
position.

Thus, inside quantum mechanics as it now stands, the germ of certain
algorithms can be discerned corresponding to an implicit calculus with
entire probability trees, This happens each time that superposition states
are represented. (This happens also each time that successive measurements
are represented. But then the conceptual insertion is different: Instead of
the principle of superposition, the projection postulate acts at the bottom,
idcntifying the operations of preparation in the general sense, with the
particular category of preparations by measurement evolutions. This distorts
and Oattens the conceptual space involved.) However, with the implicit and
incomplete quantum mcehanical calculus with entire probability trees we
penetrate into Ihis \'IlIlrllsed rrontier zone---which always does exist-where
lite repn's('III;lIillll~; alll'atly t:!:d)Ilrakd hy a thcory plunge into the still
1111\'IIII\'(·plll;lIi/I·II.nt"~ /1'lIi,' /011'//11,/ is 11t1l11!/1' fI!W/'1iI iO/l,I' O(Sllitl' !1/'('!IIiN/lio/l
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are devoid of mathematical representation. This is a lacuna of which the
consequences mark the intelligibility of the whole orthodox formalism.

relation "g," G(t/Jah)= g[G(t/Ja), G(t/Jb)]. To find the translation we write

down the conditions, in agreement with the linearity required for the G( t/J):

4. COMPLEMENTS TO THE ORTHODOX FORMALISM:

OPERATORS OF STATE PREPARATION, MEASUREMENT
PROPAGATOR; A THEOREM RELATING PREPARATIONS AND
MEASUREMENTS

G(t/J"h) It/Ji) = It/Jab) = A" It/Ja) + }'b It/Jb) = }'aG(t/Ja) It/Ji) + )'bG(t/Jb) It/Ji)

= [1c"G(t/Ja) + AbG(t/Jb)J It/J;) (13)

The function g that connects the operators G(t/Jab)' G(t/Ja), G(t/Jb) is the same

linear combination that connects the state vectors It/Jab)' It/Ja), II(;b)' So, in
general terms,

4.1. Operators of State Preparation and Their Calculus

(read: G(t/J a) acting on some-any-previously eXlstmg state with state
vector It/Ji) (known or not), generates out of it the state with state vector
It/Ja), etc.). The unknown functional relation '/" rrolll 111l~1"l'I)J'l~sl~ntation
P(I/Ial,) =I(P(I/Ia), P(I/II,)) concerning the three lill'II/,i! "1H'1:lliIIlS denoted
P(I/I"d. 1'(1/1,,). 1'(1/11» involved in (he pl'l~p:lr:llillli ,d :1 ';jIl"'lp"::ililll stak
veclor 1'/1",.) ,= }." 1'/1,,) + },.I'/I,.), will .<;'"IWIIl'"' /11111,,1111,'111111II I'llII lIa1

What operators and what calculus with these can be defined in order
to represent mathematically the physical operations of state preparation in
a way that is consistent with the orthodox formalism as it now stands?

Suppose that G(t/J) (G: generator) is an operator that represents math­
ematically the operation of state preparation P(t/J). For consistency with
the linear formalism of quantum mechanics, let us require G( tfi) to be a
linear operator. Then, to represent mathematically the preparation of the
states with state vectors It/J,,), It/Jh)' It/Jah) = )'a It/Ja) + )'h It/Jh), we have to
write, respectively, for any choice of some initial state vector It/J i):

The explicit and integrated perception of the probabilistic organization
of quantum mechanics and of the spacetime aspects involved has permitted
us in Sec. 3 to discern, inside quantum mechanics, probabilistic features not
yet described in the standard theory of probabilities: probabilistic meta­
dependences and meta-metadependences. These point toward a possible
extension of the abstract theory of probabilities. But in connection with the
mentioned features also certain insufficiencies of the quantum theory itself
have been perceived. In what follows, in order to diminish these insufficien­
cies, we produce three constructive prolongations of the orthodox
formalism.

(15)G(t/J) = (1/<t/J I t/Ji») P Iji

which we shall call a "normed projector" onto I t/J ):

A "normed" projector P Iji yields an adequate representation for the

concept of an "operator G( t/J) of state preparation" such as required by (14).

From (14) and (15) it follows that for a superposition state vector I t/J ab,)we can write

(16)

g[G(t/JJ, G(t/JIJ, G(t/JJ, ...J =G(t/Jabc.J=I AkG(t/Jk)' k=a, b, c, ... (14)
k

G(t/JabcJ = (1/<t/Jabch I t/Ji») Pljiab, . =I ()'kl<t/Jk I t/Ji») Pljib k=a, b, c, ...
k

Furthermore, since for the well-known quantum mechanical operator of
projection onto It/J), PIji' we have PIji 1~/i) = It/J)<t/J I t/Ji), V It/Ji)' while by
definition G(t/J) It/Ji) = It/J), we can write

The operator of preparation of a superposition state vector can be

represented mathematically by a linear combination of normed projectors.

This includes automatically the particular case of preparation by a
measurement evolution MA posited by the orthodox projection postulate:
In that case the state preparation operator becomes indeed
(11 <uj I t/J i) ) P I~j> where Iuj) is the eigenvector of the observable A corre­

sponding to the registered eigenvalue aj. But it has to be clearly realized
that in the formalism as it now stands the projectors P Iji are not utilized
with the fundamental role of general formal representatives of the opera­
tions of state preparation. The projectors P Ijiare utilized most currently in
the algorit hillS connected with measurement operations [density (or
statistic;lI) opn:l!<lr,'; I,

TIll' dl'i'illilillil II',) I (1/, I h:ls intcl'l:slin)!, implications concerning the

G( t/Jab) I t/J;) = I t/Jab)G(t/Jb) It/Ji) = It/Jb)'G(t/Ja) It/Ji) = It/Ja),

i

,I

II

I
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coherence between the semantics to be assigned to the formal feature of
commutativity of two linear operators and the nonformalized qualification
of "compatibility" drawn from the current language:

For consistency with the linear formalism of quantum mechanics we
have required linearity for the operators of state preparation. This entailed
the necessity, in (16), of a linear superposition of distinct, thus noncommut­

ing, normed projectors P 1jJ," P IjJb"" that will all act on one same initial state
vector II/Ji)' While two commuting projectors-which reduce in fact to one
single projector--cannot generate a superposition state vector because they
(it) cannot represent the required distinct actions on one same initial state
vector II/Ji)' In this sense:

For the mathematical representation of the process of generation of a
superposition state, distinct and noncommuting operators of state preparation
are "compatible" operators.

This appears "opposite" to what happens for the mathematical
representation of the operations of measurement of dynamical quantities:
two dynamical operators, as is well known, are considered to be
"compatible" when they commute, while if they do not commute they are
considered to be "incompatible."

Now, we have emphasized that in the case of the representation of
measurement operations, the factual counterpart of the "compatibility" of
two-commuting-dynamical operators A and B consists of the possibility
of individual measurement evolutions MAE for A and B possessing one com­

mon spacetime support. This is what entails the possibility, from each (one)
registered "needle position" Vi that has been the unique factual observable
outcome of one given reiteration of a measurement evolution MAE' to

calculate a pair of two correlated eigenvalues ai = fA( Vi)' bi = j~( Vi) (which
is verbally designated as the possibility of a "simultaneous" measurement of
the observables A and B). While if A and B do not commute, the individual
measurement evolutions M4 for A and ME for B possess necessarily
distinct spacetime supports, which is designated by the assertion that
"simultaneous measurements for A and B are not possible" (the factual
substance of Bohr complementarity),

In short: When exclusively measurement operators are considered, the
two qualifications "commuting" and "compatible" apply to the same sub­
ensemble of operators, so that they tend to identify. But whcn also normcd
projectors as representatives of operations or St:1It: prep:1ra t ion an;
considered, the domains or application or thesL' I\VI' q lI:tliric:11iOlls sepa ra Ie,
So a new language emergcs which COIICl'l'I1S:1 111"1,'('''llll'ln ',illl:lti,"1. We
sh:tll now estahlish explicitly Ihis IIl'IVI:IIWII:IF.'· I :tl"I' 111111:1,','1111111:

••

- the usage of language found above and the corresponding
designata for the case of measurements,

-- the fact that two different projectors do not commute while two
commuting projectors identify,

the fact that the different projectors involved in the preparation of

a superposition state represent individual operations that are physically
different and, nevertheless, can all act all one same initial-individual­
factual situation corresponding to one same initial quantum mechanical
state vector fl/Ji),

systematic distinction between abstract descriptor and its physical
designatum

- systematic distinction between

* the individual level of description (where are placed the various
individual realizations of an operation of state preparation, or of one
measurement evolution, or of an elementary chain experiment)

* the metalevel of probabilistic description (where is placed by
definition the quantum mechanical concept of state vector II/J) and,
correlatively, the concept of "one" (complete) quantum mechanical

measurement involving a whole ensemble of elementary chain
experiments,

and, finally,

- requirement of one same stable language valid no matter whether
measurements or state preparations are described.

The elements listed above entail together the following rather complex
.distionary.

- "compatibility" or "noncompatibility" of two linear operators
(dynamical or not): respectively, the relevance or not of the action of both

these operators on one individual realization of a state of the studied system
corresponding to one given quantum mechanical state vector.

- "commutativity" or "noncommutativity" of two linear operators
(dynamical or not): respectively, the identity or the disjoint character of the

spacetime supports of the individual physical operations represented bythese two operators.

--- Multiplicative composition of the action of two (or more) com­
I1lUling 1I1'1/1ll1/i('(/1 opl~ra tors upon one given state vector II/J): mathematical

expression oj' the I;/i'/I/I/I idelltity or two (or more) processes of qualification
oj' :Iny ill/i' illdividll:tl j(':ili/:lli')11 "J' a "Iatc of a systcm corresponding to
I'll >, vi:1 01/,' ,'011111"'" ','>1I or i//illl'i./ili/l l11l':lsllrel1lcnl cvolutions M,I/I ..



whole probability' trees, expressing a new probabilistic concept of
probabilistic meta-metadependence, is now entirely explicated.

But the most important consequence is indicated below.

4.2. The Minimal Model Involved by the Principle of Superposition

In quantum mechanics as it now stands, the mathematical expression
of the principle of superposition is referred exclusively to the state vectors.
This is misleading. Indeed-fundamentaJJy-the principle of superposition
talks about operations of state preparation. And the definition (15) + (16)
is equivalent to a deepened reformulation involving now explicitly these
operational roots also. This permits progress concerning the physical
implications of the principle.

Consider a two-term superposition state vector Il/Jab) = )'a Il/Ja) +

)'b IIji'b)' We have shown that in order to represent mathematicaJJy the
operation of preparation of Il/Jab) we must make use of a normed projector

(l/<l/Jahll/Ji»)Pi/lab=(J..a!<ljJall/Ji»)Pi/la+).,,/<~fbll/Jj)P'''b that is a linear
combination of two distinct normed projectors (11< l/Ja Il/J;)) P i/la and
(11 < l/Jb Il/J i») P i/lb which act on one initial state vector Il/Jj) out of which
they generate Il/Jab): [(J..a!<l/Jall/Ji») Pi/I"+ (J..bl<l/Jb Il/Ji») Pi/lbJ Il/Jj) = Il/Jah)'

We have also shown that this mathematical representation involves the
assumption of "compatibility" of the physical processes described by the two

operators (l/<l/Jal/J;)) Pi/I" and (l/<l/Jb Il/Ji») Pi/lb' in a definite sense which
concerns the spacetime features of the mentioned processes. Now, in conse­
quence of the conditions of norm, the two spatial domains A (Il/J a12, t) = A (a)

and A(Il/JbI2, t)=A(b), where Il/J,,> and Il/Jb)' respectively, yield presence
.probabilities that are not quasi-nun, arejlnite with respect to any fixed defini­
tion of quasi-nullity, And, since the current formulation of the principle of
superposition asserts that the state represented by Il/J ah) can be created for
any pair 1//1,,) and Il/Jb)' we are free to imagine in particular that Il/Ja(x, t)

and Il/J b(X, t) > are such that, at a given time t (in the observer's referential)
the two spatial domains LI(a, t) and LI(b, t) are disjoint and the (purely
spatial) distance that separates them is very big, say, of the order of
light-years. Nevertheless quantum mechanics still assumes, as it is explicitly
expressed by the new writing [(I·al < l/Ja Il/J i) ) P i/la+ ()'hl < l/Jh Il/J j») P i/lbJ il/Jj) =
11/1",,), that there does exist an initial state vector 1~/i(x,t'), t'<t, of
Ihe one considered "system," such that the two preparation processes

rt:prt:st:nlcd hy tllG (wo mathematical writings (l/<l/Ja Il/Ji») Pi/I" and
(1/(1/',. II/I,») 1"101, ,':III hoth t:lkt: plact: "compatibly" on each individual
rcali/.alioll "I' :\ 1';\1'111:11~;I:ltl' \'I>ncspolldil1g 10 lht: state vector II/li(X, t').
11111 Ihis j,; ;1 11/."/"/,
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realizable on one same spacetime support, but of which the-one,
common-factual observable outcome Vi' once it has emerged, can then be

conceptually worked out in various ways, ai = fAr Vi)' bi = fa( Vi)' etc.
(which justifies the above somewhat misleading wording "two or more"
processes of qualification).

_ Additive composition of two (or more )-necessarily-noncom­

muting operators of state preparation (normed projectors) upon one given
initial state vector Il/J i): mathematical expression of the generation, out of

anyone (individual) realization of a factual state of the studied system tied
with the quantum mechanical state vector \l/J i)' of one realization of a new
factual state of the studied system tied with a new quantum mechanical
state vector Il/Jo), via the action of two (or more) factually different

processes of "preparation" possessing disjoint spacetime supports, all these
processes being posited to end at a same moment, which is the initial
moment to of the newly prepared state vector \1/10) = \l/J(to)·

With this dictionary, we can noW say that:

In the case of the representation of an operation of state preparation

G(l/Jabc ... ) = (l/<l/Jah' .. Il/Ji») P i/labc.. = Lk ().kl<l/Jk Il/J;)) P i/lk, k = a, b, c, ...

that generates a superposition state Il/Jabc..'> = Lk(}'k Il/J k)' the distinct

noncommuting normed projectors (11< l/Jabc.. Il/J i) ) P Ij;k that are involved

correspond to compatible physical actions of which nevertheless the spacetime

supports are disjoint.

So quantum mechanics permits (could we even say that it requires?)
a certain coherent prolongation of its formalism and its language, where the

operations of state preparation (all of them, not only those consisting of
measurement evolutions MA) are mathematically represented by operators

of state preparation O( l/J) that are normed projectors combined accord­
ingly to a specific calculus entailed by the fact that the space of the normed
kets Il/J) is a vector space. This calculus with operators of state preparation
is distinct from the calculus with dynamical operators, which represent
measurements and are tied with the principle of spectral decomposition.
This finally demonstrates that the formal structure of the quantum theory

by no means entails the orthodox l1attening identifications between
preparations and measurements and between superpositions of several stale
vectors and spectral decompositions of one state vector: It n;jects Ihem in
fact, if we go to the bottom.

The definition (15)+(16) ofopcr<ltors Ilrsl:11I' 1'1I'1':\\:ili,," df:1Ccs lhe
laclll1a ill thL~ rilles of cOl11hil1<1liol11>1'I\\,I> 1>' 11111'1'l'IIIh:lhility trl'es

rl'g:Ir\kd as whoks. S" th\' il\ll'li,'il <111:\1111111111I1'I'hllllll',1Il'II1<'I1IIISwilh

•••
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The principle of superposition associates to the entity called "one" quan­

tum system, a model according to which an individual factual realization of a

state of this entity can be such that~whatever be other nonspecified qualifica­

tions of it~this state covers an arbitrarily big spatial domain, notwithstanding

that in some nonspecified sense a quantum system is conceived to be also

"microscopic" (it is even often called "one microsystem").

Horribile dictu, but the orthodox formulation, though it proclaims inter­
diction of any model, in fact is itselffounded on a model. And this model, on
the one hand, violates the natural slopes of the connection between what we
would agree to call a microsystem and the designatum forced upon us by the
princile of superposition, and, on the other hand, is not achieved, not worked
out. In this sense it is a "minimal" model. Whether it is explicitly declared or
not, this minimal model is there, encapsulated into the principle of superposi­
tion. Camouflaged loosely inside the conceptual volume delimited by its non­
committal absence of full specification, this minimal model fluctuates there
implicitly, leading to confusion and perplexity. And it acts on our speaking
and on our thinking. It literally invades them in the form of problems and
paradoxes that haunt the quantum theory ever since it appeared.
"Schrodinger's cat" or more abstractly "the reduction problem," as well as
the "locality" problem, are only the most striking distillations and scandalous
amplifications of consequences of this hidden unfinished model. Only further
specifications could remove the ambiguities that emanate from this model,
and perhaps thereby also its queerness. In Sec. 5 of this work we shall sketch
out qualitatively such further specifications, while just beneath we continue
to stay inside the orthodox theory.

4.3. Measurement Propagator

We have brought forth a radical distinction between, on the one hand,

preparations and superpositions of several state vectors and, on the other
hand, measurements and spectral decompositions of one state vector. We
shall now try~confined inside the orthodox approach~to understand more
clearly how these two distinct pairs of concepts are related.

Bohm, (14)de Broglie, (15)Margenau and Park(19) (in their study of the
"time of flight" method for the measurement of the momcntum observable),
as well as other authors, have already strongly and variously cmphasizcd that
an evolution of the descriptor III/(.\", t), ir it is ")'.tHHI" 1'01'producing
"measurement evolutions" M.1 ofthc rirst kind 1'01',III,,1\~;('I'vahk i\. possesscs

spccific char:lctcristics, Nevcrlhckss, till:1I1I11111111l'l'ilillli,':::1:;il 11011'slands
docs 1101illtroducc all cxplicil )',L'I1l:r:d(It-rillili"ll ,,1111.,"1"'1111"1"I ('\,(,jlliioll

~J:'7~••

HA to be tied with the individual measurement evolutions M A corresponding
to a dynamical observable A. It only supposes implicitly that, given a "physi­
cally significant" quantum mechanical observable A (as is well known, not
any quantum observable is measurable), such an operator HA can be found
for A. Below we introduce a condition that ensures some of the characteristics
identified by other authors,

Condition CHA• A quantum mechanical evolution operator HA can
be connected with the individual measurement evolutions M A of the first
kind corresponding to a quantum mechanical observable A only if it works
like an operator

[1/(X(x, t') IIji(x, t)J PX(X,I')

=L [lc(lji, aj)1 eiX(j)/(cJ>j(x, n IIji(x, t)J P<pj(X,I')
j

of preparation, out of the studied state vector IIji(x, t), of the superposi­
tion state vector

Ix(x, n) = L Ic(lji, a)1 eiCl;(j)lcJ>j(x, n), (> t
j

where

icJ>j(x, (», for any j, is a normed eigendifferential corresponding
to an eigenvector Iuj (x) of A

the coefficients of linear combination reproduce the real parts
ic(lji, aj)1 of the expansion coefficients c(lji, t, aj) from the spectral decom­

position IIji(x, t) = Lj c( Iji, t, aj) I uj (x) of the studied state vector
IIji(x, t» on the basis of eigenvectors luj(x) of A, the factors ei(~)j being
arbitrary (in particular, these factors can reproduce those from the

c( Iji, t, aJ, or, alternatively, they can be all set equal to 1, thus introducing
a superposition with real coefficients),

~ the spatial domains .dj(X, t'), where the presence probabilities
corresponding to the state vectors lcJ>j(x, t') are not practically zero,
become mutually disjoint up to an approximation that can be improved
without limitation by increasing (.

This condition requircs Hi\ such that out of the studied state vector

I'II(,\', /) il sh:dl III/Ileriali/.c :Ipproximately in the physical space, at times
t' ~" /, Ihe ah~;lr:H'1 spl'('lr:d dl'I'I)fllpO.silion or III/C\", I) on the basis of
eiV,I:lIvn:I"r:; 01 i\
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This proof, trivial as it is, establishes a crlll'i:1I l'IIIIII,'('lillll hel ween
thc two fundamentally di.l'tillC'/ eoncepls 01"Slw\'lr:1I d\'\'onqH1silion ;tnd

01"superposit ion 01"s(a (es. M ore, ill I"ad, II "::I:d 1Ii,:lII·::.1"111'IIIl' gl'lIer:1I
tI":II\1111 II1L:challic:d pn:diciiollal!,tI,I/III'If" (.'1 1111/1''',1 1'",\1//>1'

4.4. A Measurement Theorem

The condition CH A' if it is realized, entails the following theorem.

Measurement Theorem MT. The event "registration for IIjI(x, f) of

an eigenvalue ai of A" can be represented by the event ["registration for
lx(x, f') of the presence inside the domain Llj (X, t ')"J ~ [x E Llj (X, f') J,
namely, in the following sense. The numerical equality

n(ljI, a)=n(xELlj(X, f'))

where n(~J, ai) and n(x E Llj(X, t')) are, respectively, the quantum mechani­
cal probabilities of the first and the second event specified above, is realized
with an arbitrarily improvable accuracy for any measurement M" of the
first kind.

Proof Consider the superpositIOn state vector Ix(x, f') =

Lj Ic(ljI, ai) k~ilC/Jj(x, f'), t' > f, as defined in CHA• At any individual
spacepoint x we have for Ix(x, t') a presence probability which (at most)
is reduced to only one term

n(x, X) = Ix(x, f'W = 1c(1jI,a,)! ei~If(/J'f(x, t')12 = Ic(ljI, a(/)12 1C/JIf(x, t'W

where the index (J designates, among all the disjoint spatial domains

Ll/X, t'), that one to which belongs the considered point x. Then the fOfal
quantum mechanical presence probability inside the domain LlIf(X' f') is,
from the expression of n(x, X) and because of the norm I of the II/Ji(x, t'),

n(x E LlIf(X' t')) = J Ix(x, 1'W £Ix = 1c(1jI,alfW J II/),/x, f'W £Ix = 1c(1jI,alfW
.1'1

which by the postulate (2) is also the quantum mechanical probability for the
realization of the eigenvalue al{' This is true only approximately but with an
accuracy which accordingly to CHA can be improved arbitrarily by increas­

ing 1', i.e., by improving the mutual disjunction of the spatial domains
Aj(X, 1') and thus the mutual orthogonality of any two distinct state vectors
\C/Jj(x, f') and IC/Jk(x, t') ». So, with an arbitrarily improvable accuracy, we
have indeed

n(x E AIf(X, t')) = Ic( ljI(t), alfW = n(t/J( t), lI'/)'
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1< ui IIIJ ) 12], an "explanation" deduced from the condition CH A and the par­
tindar acceptance of (2) concerning exclusively the position observable,
n( 1jI,x) = IIjI(x )12• And notice that the deduction is founded upon the distinc­
tion between spectral decompositions of a state vector and superpositions of
several state vectors.

Via the condition CH A and the theorem MT, the spectral decomposition

of the studied state vector IIjI(x, t) with respect to the eigenvectors of a

measured observable A appears as an only abstract conceptual prefiguration
of the superposition state Ix(x, t') actually prepared in the physical space,

at later times t' > t, by the quantum mechanical operator HA of measurement
evolutions MA'

By a rotation inside the Hilbert space of the system, the measurement
propagator H" brings asymptotically the conceptual spectral decomposition
with respect to the eigenkets of A, of the studied state vector IIjI(x, t), down
onto the physical space. The abstract "disjunction" represented by the spec­

tral decomposition jljl(x, t» = Lj c( 1jI, t, aJ IUi (x) > distinguishes inside
IIjI(x, t) between the elements of a family of mutually exclusive "how's"

represented by eigenvectors IIIJ>, no matter where in spacetime, since
<Ilk I ui)=O for j#k but the Iuj)'s are time-independent and in general
distinct 11I)'s do not possess disjoint spatial supports. The measure­
ment propagator HA transposes this abstract disjunction into a "disjunction"
in the physical space, represented by the superposition state vector

Ix(x, 1') = LJ !C(IjI, ai) lei~jlC/Jj(x, t'), t' > t, that distinguishes between the
elements of a family of mutually exclusive "where's," the AJ(X, t'), while how

is what populates the disjoint spatial domains A/X, t') is devoid of pragmatic
significance: With respect to the pair of qualifications how-where the initial
situation and the final one are upposed.

Consider in particular the following degenerate situation. A = H,
where H is the operator of total energy of a microscopic bound state. The

spectrum of eigenvalues ai = Ej of the considered observable H is discrete
and the corresponding eigenvectors identify with a discrete family of
normed state vectors, so the spectral decomposition of the studied state
II!J) with respect to H identifies with the superposition state Ix) involved
in the condition CH,., while the time parameter loses its importance, the
situation being stationary. In these conditions it seems necessary to assume
in a "self-referent" way that HA = 1/ is H itself. This suggests that, in this
casc, that is particular from a logical standpoint but of outstanding
pr.lgmalic il11porl:lncc, it has 10 be assumed that a corresponding measllre­

///('111 I'/'ll/I/Iillll 111'IIJ,' iirsl k ille! 111/.1' I/lrl'(/(~), he('n accomplished by the natural
!lrll",'SS IIJIII hilS !>Iollghl /"rlh 1//1' ('II//,I'ie!('rl'e! 1/l/lIl/ti:l'd hound state. This
11:11111:11 pI'O\"'SS did I',,,dllli' II,,· 111\IIII:tll,Ydisjoinl spali:tI domains /fi(X, I')

~
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also, but because of the spatial confinement of the whole studied superposi­
tion state vector inside a microscopic domain, the estimation of presence
probabilities as a substitute for the experimental estimation of the

probabilities \C(I/J(t), EJI2 is impossible. Only another indirect method can
be used in this case for the experimental estimation of the probabilities of

the eigenvalues Ei of H.
Since quantum mechanics was built while attention was focalized

mainly upon the atomic bound states, the remarks made above offer an
explanation of the tendency toward an identification between superposi­
tions of state vectors and spectral decompositions of a state vector.

5. BEYOND ORTHODOX QUANTUM MECHANICS:®
THE [PARTICLE + MEDIUM] INDIVIDUAL MODEL

5.1. Probabilistic Insufficiencies of the Orthodox Theory and Questions of
Interpretation

The analyses performed in the preceding section produced, we hope, a
reiterated and increasingly striking perception of the absence of any definite
and formalized description, inside the orthodox quantum mechanics, for
the individual processes corresponding to the elementary quantum
mechanical chain experiments. These, by their very..definition, involve only
one realization of an operation of state ir~of a measurement
evolution M A' and of a registration of an observed datum Vi' The
orthodox formalism involves them quite fundamentally: They are the

operational-processual substratum of the quantum mechanical elementary
events in the sense of probabilities, the observed data Vi formally represented
by corresponding eigenvalues ai. They constitute the reproducible procedure
(4) from the random phenomena (5), (5') that introduce the quantum
mechanical probability spaces. Nevertheless they are devoid of mathematical
descriptors. They are even devoid of only an explicit convention for
symbolization. They are just left nonrepresented inside the merely spoken
accompaniments of the formalism. In this sense-quite independently of
any philosophical issues concerning essential indeterminism-the orthodox
formalism is incomplete. It is incomplete with respect to itself, with respect
to the abstract theory of probabilities which it applies and even deve10rs
implicitly. This, at least partially, explains why thc probabilistic organization
of quantum mechanics remained so cryptic. In Scc.4 WG have partially
remedied this incompletencss by const rne! ing, inside thG orl hodo.\
formalism, a mathematiGal represenlalion "I' IIIl' "pn:ilions or stale

fS'rcP"1r~nd by :Issnciating a 111:lthcln;lli,';IHv<'\pl"~"il'd "olldition In th.,
individn:iI nIC:iSnl'l,I11Cnlcvolnlion,; 1'1,'villll,.I,I' ·.vllIl"dill·d 1>\' 11.1' 11Y M I

(~) A; 't:~!~-1II; II I .j <"-"/(;~~/' J:, L-;J""""""d/.j\ (:.,,1, .t li'rilL •.r*' t~L!~'~
). p' V '( j' y't.' (:'I..I1/J~V~~ ",'t. -'..,,'i (~'" IFJ'~.~~/:,~) ,:.•.f. it L"' _L"~-g f--o 1-L~",).1' ~l .;.~,_I"',,_ 1(.:
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(which led to a measurement theorem), But the object of one single
realization of an operation of state preparation followed by an individual

evoluti,on MA s,till remains ambiguous. ?n the one ,hand, the o~~formalIsm assocmtes a state vector II/J> wIth an operatIOn of state prepftffi- _
4ffifl, but with each one reiteration, or only with the ensemble of all of
them? On the other hand, we have shown that at the very bottom of the
orthodox formalism, in the principle of superposition, is encapsulated a
model concerning that on what one operation of state preparation acts, a

model which at one and the same time is camouflaged, incompletely
specified, and obscurely perceived but non understood, thereby generating
paradoxical problems. In what follows, transgressing now decidedly the
domain of the orthodox theory, we shall try to specify this orthodox model,
but only qualitatively for the moment. It will be remarkable to find that

this suffices for triggering a whole chain of "explanations" concerning the
physical significances of: the principle of superposition, superselection
rules, spectral decompositions of a state vector versus superpositions of

state vectors, the projection postulate, and the reduction problem, Thereby
the loops of interrogations opened up in the preceding sections will be
closed by stippled lines.

5.2. A [Particle +Medium] Specification of the Minimal Model Involved in
the Principle of Superposition

Concerning an individual "system" described by the quantum theory,
let us admit tentatively that: An individual entity concerned by the quantum
mechanical description cannot adequately be called a "microsystem,"
because each such entity consists of:

- (a) What is currently called the (universal) "medium" or the
"void," simply all of it.

(b) A highly localized part of the universal medium-this to be
called a "microsystem" or a "particle"-which is separated inside this
mcdium conceptually, for methodological reasons, and is regarded as a
"source of perturbation" of the whole "rest," with respect to itself, of the
universal "medium," the perturbations being posited to spread out with
some finite phase velocity(20).

This sort of system will be called "[particle + medium] individual
system," in short a [p + m] individual system.

COII('('/'Ilillg II ".1'/1//(''' I!f a [p + mJ individual system, let us admit that
il is Gharaclcri/l'll hy:

(a) A IIll'dilllll .';I;lk.

(h) !\ "1';1111\'''' '.1111<''' I'i.II·,i';lilll\ "I' Il1l, ;Issncialion hclwecn
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* An inpariant "intrinsic particle state" of a given "type" determined
by several quite definite qualifications (constant numerical values
defining a "rest mass," a "spin," an "electric charge," etc.). So, using a
perhaps more pertinent language, we can now say that a particle is a
definite sort of highly localized state of movement of the universal
medium.

* A pariable "dynamical particle state" described by other, "dynami­
cal" qualifications ("position," "velocity," "velocity-dependent mass,"
"momentum," "angular momentum," "energy," etc.) tat are relative to
the state of observation.

The particle states are posited to interact with the medium state in the
following sense. The particle state is supposed to act on the medium state
via perturbations that are somehow dependent on the type of the intrinsic
particle state, while the medium state is supposed to (in general) act back
on the particle state, on the dynamical particle state, or even on the
intrinsic particle state (creations or annihilations). This restores the unity
of the universal medium, conceptually broken for methodological reasons.

~~~ D/~
Concerning the fJi'c17f1rtltio/l"s,let us admit that:

- Each one operation of preparation of a state of a [p + m]
individual system does introduce one particle and only one (if it introduces
none, we shall say that it is only a preparation of a state of the medium,
but not of the whole metaentity called a [particle + medium] individual
system, while if it introduces two or more particles, we shall say that it is
a preparation of a many-particle state, so that it exceeds the one-system
quantum mechanics).

Each one preparation of a state of a given sort of a [p + m]
individual system introduces always one and the same typical invariant
intrinsic particle state of that [p + m] individual system.

- Each one preparation of a state of a [p + m] individual system
introduces a dynamical particle state which, in contradistinction to what
happens for the intrinsic particle-state, belongs to a whole ensemble of
possibilities. The dynamical particle states are nonspec((ied and nondescrihed

individually inside quantum mechanics as it n01\' stl/llds.

- Each one preparation of a statc 01':1 I J1 I III I individn:iI syslcl1l
does introducc onc and 01111'onc I1lcdinll1 sl:II(' ",lIidl Iwllll1)'.s III II \1'11011'

l'IIS('llIhle or possihililics. Thc Illcdinill ,';1:11,':; :llt' 1I11I/,I'I"'t'il!"'! ,III'! 1/011­

t/1'stTihl,t/ illt/i,'i,!I1I1III' iIlSit/I' ({1I1111111111111,·,,11,/1/1,'\

~

Conceming observation, let us assume that

- The registration of an eigenvalue of a quantum mechanical
observable can be produced only by the interaction of a convenient macro­
scopic apparatus, with the sort of highly localized state of movement of the
medium that has been caHed here a particle.

Conceming the relation between the states of a [p + m] indipidual

system and the "corresponding" quantum mechanical state vector 11/1), let usadmit that:

- The state vector Ii/J) connected with the results of the actions of

the operator of state preparation represented by the normed projector
(1/(i/J I i/Ji») P i/1 is a statistical metadescriptor representing the whole
statistical ensemble of individual dynamical particle states and of

correlative individual medium states of the involved individual [p + m]
system. Via the algorithms of the quantum theory, this state vector Ii/J )

yields only a knot of mutuaHy nonseparated characterizations of the one

invariant intrinsic particle state of the studied [p + m] individual system,
of its variable individual dynamical particle states and medium states intro­
duced by the reiterations of the operation of state preparation represented
by (1/ (i/J I i/J,.) ) P i/1, and of the relations between these.

Together, the ensemble of assumptions listed above constitute "the
[particle + medium] model." The sort of individual system involved in this

model is both "microscopic" by its "particle" part and arbitrarily extended,
"cosmic," by its "medium" part: It obeys the requirements of the minimal

orthodox model involved in the principle of superposition, and it completesthis model explicitly.

The explicitly declared unlimited extension of the medium part is a
new and fundamental feature with respect to the well-known de
Rroglie-Bohm model. More or less correlatively there are also otherdifferences.

- In the first place, the [p + m] model does not include the

extended "field" (calJed here the "medium") into the concept of "particle"
or "microsystem." It juxtaposes it (methodologically only) to this concept.
This difference is not devoid of significant consequences. Indeed, it foJIows
from it that the [p + m] individual model does not introduce notions like

"wave of the particle," or "wave-particle duality involving wave aspects of
a particle," or "a particle which passes through both Young holes," or "a
particle olll'hii'h the corpuscular part passes through one Young hole while
its wavc p:lsses Ihrollgh hoth Young holes," etc., All this sort of paradoxical
1(/l/g"(I.~I' is ,'/lfif,'/I' I'//;'('I't! hy (he [p + m] individual model. Such is the
power or IIII' ("lllIi,"',':III'St'III:lnlic;i! assignatiolls, to words, conventional as
Ihcy an'. \V,. :1'" 11'11 11'1111 ill:.1 :1 :;(;11,' III' 11I(IVerl1enlor the universal medium
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involving one highly localized particle movement, only conceptually--but
radically-separated inside the universal medium for methodological
reasons favoring the descriptibility.

- In the second place the mutual distinction and characterization of
the "particle" and the "medium" is, qualitatively, more specific.

In the third place, the relation between the quantum mechanical
state vectors and the defined individual system is different, The distinction

between the two descriptionallevels where these two descriptors are placed
is more radical: It is posited to concern also the states of the medium part
of an individual [p + m] system, not exclusively those of its particle part
("the position of the particle inside its wave"). This entails, for instance, in
contradistinction to what is done in the de Broglie-Bohm interpretation,
that the action of the individual medium state, upon the corresponding
dynamical-particle-state, cannot in general be represented with the help of
functions (like the quantum potential and the forces derived from it) of the
amplitude and the phase of the quantum mechanical state vector which has
a statistical meaning. In a future work this will be found possible only if the
quantum mechanical state vector has in particular a one-to-one relation
with the corresponding individual medium state, as probably happens
in the case of a microscopic bound state and of certain macroscopic
interference states.

Finally, with respect to Bohm's concept of "holomovement" also
there are differences. The [p + m] model of an individual system does not
refer to the "sub quantum medium," nor to fluctuations of this medium; it
refers directly to the object of the quantum theory itself, for which no other
object is supposed.

5.4. The [Particle + Medium] Model and the Principle of Superposition

Consider the principle of superposition, formally expressed in our
terms: for any pair of preparable state vectors II/Ja) and II/Jb) there exists,
for any complex numbers Au and lb' an "initial" state vector and an opera­
tion of state preparation (l/<l/Jubll/J))P</Jab=(Jcal<l/Jall/Ji))P</Ja+

V-bl < I/Jh II/J) ) P </Jbsuch that

(1/<l/Jab II/J)) P</Jab 11/J)= [()·aI<l/J" II/Ji») P>jl(l+ (}'I./<'/Ih It/Ii») P'/Ih] II/I)

=)'(1 I IPa) +)-h I 'Ph) = II/I,d')

The [p + m] individual model permits liS to IlIldn:;I:llId 1I0W111l:prillciple
of sllperposition as tlte ;lssertion tltat, olll or IIll' Illil"II 1'11:,1'111111\:or sl:lks
or pertllrhatioll of lite IIlIivc('s;II 11IL:dilllll('I'IIIl':,I'II"'d 1,\' II/I, " il I:. ill prim'illk

Ji

possible to produce for the studied [p + m] individual system involving an
indefinitely extended medium part, a new ensemble of states of perturbation
corresponding to any chosen quantum mechanical superposition state vector

II/Jab' to) = Aa /I/Ja, to) + Ab /I/Jb, to). No matter how big is the spatial
distance that separates from one another the two finite spatial supports
L1(a, to) and L1(b, to) where the quantum mechanical presence probabilities
defined respectively for the two state vectors II/Ja, to> and fl/J,,, to) are not
practically null (according to some definition of practical nullity, anyone
but fixed), this can indeed be conceived to be possible via reiterations of

some global action that takes place on and in the indefinitely extended
medium parts of the involved replicas of the studied system, This global
action, represented by the normed projector (11< I/J ab II/J i> ) P </Jab, can be
conceived to stem from the two separate actions represented by the two
normed projectors V·al < I/Ja II/J) ) P </Jaand (J'bl < I/Jh II/J i >) P,j;b) that combine
in the expression of (1I< tjJ ab II/Ji >) P </Jab' Each one of these two separate
actions consisting of some corresponding process triggered by a human
observer via some interactions with (or stemming from) macro objects, thus
necessarily local in spacetime, but that can be followed by a process extending
inside the medium on arbitrarily big spacetime supports and ending, in
each reiteration of the global process of preparation represented by
(11 < I/Jab II/J i > ) P </Jab' at the time to (statistical, measured with respect to the
zerotime of that reiteration) when has been achieved an individual factual

situation corresponding to the quantum mechanical descriptor II/Jab' to) =
),a II/Ja, to) +2b II/Jb' to): The paradoxical notion that it is possible to act
"simultaneously" on one microscopic "particle" at two arbitrarily distant
place, disappears (Figs. 3A and 3B).

5.5. The [Particle + Medium] Model and Interference with Respect to the
Summed State Vectors

The interferences relative to the summed state vectors appear as
intimately related with the above interpretation of the principle of super­
position, The "multiple" character of the operation of state preparation of
a superposition state vector plays the main role, From the different

localized sources of perturbation of the medium involved by an operation
of state preparation of this sort spread out, inside the medium, perturba­
tions arriving from different directions at that or that space-time point.
This creates an "interference field" that acts on the dynamical particle state
(and possihly also on Ihc intrinsic particle state, namely on its intrinsic
massll"I) :ll'I'o('dill1'. II) 1:lws of interactions which probably will have to be

;ISSllllled 10 III' I"::a'lIli:lllv of lite type of those rositcd by the de Broglie­
HollIlI 111<>.1,,1'II I', 11'1'11I-II<>\\'II11t;11;Il'l'ordillg to the de Broglic-Bohm
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model particles of which the movement is commanded by laws of that type
can (in certain geometrical conditions) produce, on the statistical level,
observable "interference patterns" of impacts, while such patterns never
arise in the absence of a "multiple" character of the operation of state

preparation.
This consequence of the [p + m] model associates an interpretation to

the calculus with whole probability trees discerned (and completed) inside
the orthodox formalism.

5.6. The [Particle + Medium] Model and Superselection Rules

Our definition of operators of state preparation, associated with the

interpretation of the principle of superposition offered by the [p + m]
individual model, permit us to specify in quite general terms a possible
source of superselection rules. Consider two operators of state preparation

(1/ <Ij;a I Ij;i) P'/1aand (1/< Ij;b I Ij;i») P </Ib) corresponding to two state vectors
lIj;a' to) and lIj;b' to)' The two finite spatial supports LI(a, to) and LI(b, to),
where at the time to the quantum mechanical presence probabilities are not

practically null (according to some definition of practical nullity, anyone
but fixed), are data that can be caculated inside the orthodox formalism.
But the dynamics of progression of the perturbations of the medium part
from the studied [p + m] individual system, represented by the normed

projectors (1/ < Ij;a I Ij;) ) P </I a and (1/ < Ij;b \ Ij;)), are not described inside
orthodox quantum mechanics. Imagine now that these dynamics were such
that it is not possible to find two places in the medium starting from which
at some initial times ta and tb, ta< to, tb< to, the perturbations reach at to,

with the required form, the domains LI(a, to) and LI(b, to)' In this case the

superposition state vector \Ij;ab, to) = }'a lIj;a' to) + }'b lIj;b' to) cannot be
prepared. On the other hand, the unlimited character of the medium part­
which entails the possibility of arbitrarily big time intervals fa - to and

tb _ to-suggests that any impossibility of the type just specified should be
tempered perhaps in terms of high improbability of a natural realization or
practical impossibility of an intentional one. This would amount to
suppress in principle the superselection rules, thus conserving rigorously the
structure of vector space for the ensemble of state vectors. This permits one
then to associate this ensemble with linear algebras of operators in a way

that in principle remains free of limitations.

5.7. The [Particle + Medium] Model Versus P!'njet'linn, PI'l'JIal'alillll hy
Measurement, and Reduction

Consider lil'st ol1ly 01/(' 111\::ISlll'l'llll'111,'\'ldlll\1I11 1\1 I \'IIIIl'l'l'l1il1g a

ql1anllll1\ II1l~d""lil'al nhsl'I'vahk A. Thi:; 111(,:1:,111,'1111'111"\'IIllIlillll II\'IIII11',SItl J'..

some elementary quantum mechanical chain experiment [preparation

P(Ij;)-measurement evolution MA-registration of a needle position Vj of
DA] (for the sake of simplicity we admit 1Ij;0)=1Ij;»). According to the
[p + m] individual model the operation of state preparation P( Ij;) realized
at the beginning of this elementary quantum mechanical chain experiment
does introduce a particle, and only one, and the eigenvalue registration
from this elementary quantum mechanical chain experiment can be
produced only by the interaction of that one particle with a convenient
macroscopic apparatus. This entails already-exactly as in the case of the
de Broglie-Bohm model-that one elementary quantum mechanical chain

experiment can produce only one observable result Vj tied with only one
eigenvalue aj = fA( Vj): There is no need of a "reduction" in order to explain
why each one elementary quantum mechanical chain experiment produces

only one observable result Vj'
What are we now to coherently assume concerning the medium-state

during the one measurement evolution MA involved by one chain experi­
ment? With respect to this question also the [p + m] model works in a
way similar to the de Broglie-Bohm model. But it permits one to go
further. Let us come back to the condition CHA and the measurement
theorem MT. These complete the orthodox formalism by statistical
statements. But the [p + m] model permits one translate them as follows
into individual terms:

Inasmuch as it is "good" for yielding a registration of an eigenvalue

ai = fA( VJ of the observable A, an individual measurement evolution M A

from an elementary quantum mechanical chain experiment [preparation
P(!/J)-measurement evolution MA-registration of a needle position Vj of
D A] is such that it transforms the initial individual [p + m] state
(unknown and nondescribed inside the quantum theory) produced by
the one realization of the operation of state preparation P( Ij;) from that
experiment into a new individual [p + m] state where:

- On the finite spatial support Llj(X, t') where the eigendifferential
Iq)j (u, t) corresponding to the eigenvector Iuj) asserts a nonzero presence
probability (see p. 1441), the type of medium state that surrounds the one
highly localized particle involved is well characterized mathematically by
the one, Iuj), among all the quantum mechanical eigenvectors of A (while
nothing is specified concerning the state of the medium outside Llj(X, t')).

-- By interaction with the medium state from the vicinity Llj(X, t') of
the one particle involved, well characterized by the functional form of a

mathematical descriptor Iui), the dynamical particle state acquires characters
thai '"mirl'\1r" Ihal medium slate. These-not defined and thus nondescribed

inside 1\11:111111111I1ll'l'h:ll1il'S :1I'l:s!{('11 (hat by the final interaction of the
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particle with the apparatus for registration of eigenvalues of A there
emerges the observable datum Vj that leads to precisely the particular
quantum mechanical eigenvalue aj = fA( Vj).

According to this view, the generally nonnormed eigenvectors Iuj) and

the corresponding eigenvalues aj from the orthodox quantum mechanical

formalism describe conjugated aspects of the [p + m} individual system:

_ The quantum mechanical eigenvectors lu) point toward
individual though arbitrarily extended factual designata, namely definite

types of patterns of medium state. Each eigenvector \uj) can be regarded as
an abstract, idealized specification, in mathematical terms, of a particular
"value" of another more general qualification (semantic dimension),

namely that of "medium state created by a measurement evolution MA,"

and which a priori admits of an infinite ensemble {IUk)} of distinct
"values." An eigenvector luj> yields a Platonic specification of the more

general qualification of an M[generated medium state, a specification
comparable, say, with some given nuance of blue that specifies the more
general qualification of color in a way freed from any physical spacetime
confinement: a pure definition of a certain "how."

_ The eigenvalue aj corresponding to the eigenvector IUj) is a
character of the dynamical-particle state that corresponds to the pattern of
medium state characterized by Iuj).

(Notice that in orthodox quantum mechanics the qualifications of
space and of time-Kant's a priori frame-qualifications, the "pure" where's
and when's involved by any how but prior to it-possess, each one, a par­
ticular status of its own. The eigenvectors Ixj> = b(x - Xj) (representations
of atomic here's) tied with the position operator X (representation of some­

where) are highly singular functions. As to the time qualifications, they are
devoid of a corresponding operator. Furthermore the individual and the
statistical level of temporal description are currently mixed up with one
another or confounded. The time parameter from the argument of a state
vector It/J(x, t) possesses exclusively a statistical meaning, while inside
certain nonformalized definitions of measurement evolutions (consider, for
instance, the method of the time-of-flight for momentum measurements)
individual times come in, concerning the individual, elementary quantum
mechanical chain experiments and their individual outcomes aj = fA ( Vj):

Obviously the quantum mechanical incorporation of thc timc 4ualifications
is still very primitive. In such conditions, wha I hope is 1 here to achieve a
unification with relativity?).

In short, imaginc that hy 0111' 111l';ISUn~111l"111l'\'ll\lllillil M I tIH.~011/'

individual unknown !"p -\·ml state il1iliall~' 1\\1"\1,,,,'<11,1' I\I\' ppnaliol1

1'(1/1\ 1'1"<1111OI1l~ givcu c!cllll'nl:lry 1\11:1111111111111,\·\1111111'111t'\\l11111'.\\1I·rinll:nl.

acquires a new state well characterized-inside an arbitrarily extended
vicinity of the one particle involved-by one pair of quantum mechanical

descriptors (I uj ), aj). Then, iff the registration of the datum Vj tied with
the eigenvalue aj = fA( VJ is nondestructive (as in a Stern-Gerlach spin
registration), after this registration the metaentity [particle + medium]
remains indeed in an individual state which, around the "particle," con­

tinues to be well characterized by the same pair (Iuj), aj) of quantum
mechanical descriptors of which the relevance has been ensured before the
registration by the individual measurement evolution M A' This pair of
descriptors is then indeed adequate for the estimation of future probabilities
concerning possible observable manifestations of that individual state of the
studied [p + m] individual system. While the characters of the medium
state far away from the "particle" do not produce observable effects. (This
last assumption might come out to be false if an interference (of the
medium-state with itself) were deliberately produced after the eigenvalue
registration, as Wigner has suggested. (21) Which would only confirm the
[p + m] individual model and would permit one to study in more detail
the individual medium state produced by a measurement evolution MA-)

Anyhow:

We can understand now both the orthodox definition of operations of

stale preparation, as measurement evolutions, and the projection postulate,

without entirely accepting them, of course. The significance of the normed

probabilistic quantum mechanical state vector l<Pj) that "corresponds" to
the eigenvector I uj) in the statement of the condition CH A' becomes also
clear. According to the [p + m] model the descriptor I<Pj) has to be regarded

. as a statistical metarepresentation of the individual system involved.
According to this model the superposition state vector IX(x, t') =
LJ c(lj;, aj)1 eia(j) l<Pj(x, 1'), l' > t, can emerge out of the studied state
vector [Ij;(x, t) only by a large ensemble of reiterations of the action of the

measurement propagator HA. So I<Pj) has to be regarded as a statistical

metarepresentation of the specification of the more general qualification of
an MA-generated medium state that is individually represented by the pair
(Iuj), aJ A statistical mathematical representation ("packet") where the
statisticity involves adulterating .fluctuations around the precise individual
mathematical qualification given by the eigenfunction IUj)' (However, the
"imperfect" descriptor l<Pj) alone ensures the possibility-crucial from a
pragmatic point of view-of the measurement theorem MT.)

Finally, consider the reduction problem. Since according to the
[p+mJ modcl thc process of passage from IIj;(x,t) to Ix(x,t')=

Lidl/I, 11,)1/,1<111 II/',CY, I'). t' > t. conccrns a statistical ensemble of
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individual processes, the generation by the measurement propagator HA as
well as the conservation by the unitarity of HA, of all the terms of the
superposition state vector I X( X, t') >, concern exclusively this statistical
ensemble. They do not concern also the individual elementary chain
experiments.

The reduction problem simply disappears when the level of individual

description is clearly distinguished from the metalevel of statistical descrip­

tion: On the statistical level there is no suppression of superposition terms
while on the individual level there is no superposition of terms,

As to the informational reduction which appears in the observer's mind
when he becomes aware of an individual eigenvalue registration, this is not

a specific feature of the quantum theory. It is introduced by any
probabilistic representation.

These last interpretations achieve our distinction between superposi­
tions of state vectors and spectral decompositions of a state vector and our
connection between these two notions,

6. CONCLUSION OF PART I

We have constructed an integrated view concerning the probabilistic

organization of the quantum mechanical formalism. This view brings in
four hierarchically connected descriptionallevels:

- The elementary quantum mechanical chain experiments (eqmce),

- The basic probability chains (I'), (5) which are metastructures
with respect to the elementary quantum mechanical chain experiments.

- The probability trees of a state preparation Y(P(ljIo), 11/J » which
are metastructures with respect to tbe basic probability chains (1'), (5).

Linear superpositions of probability trees which are metastruc­
tures with respect to the probability trees, namely compositions of several
entire probability trees entailed by the principle of superposition (we do
not mention the quantum mechanical algorithms representing successive
measurements which, by use of the projection postulate, identify con­

fusingly the prep arable states of a microsystem alld thc cigcllflillCtiolls of an
observable ).

The integrated view concerning thc 11IIII>:!l>ili:ili,'"'l',lllli/:!li"1l III'
quantum mechanics has actcd :IS :111insll"llnll'lll 1111"lill,':11 :11I:lIy.'>I",':111111for
constrllctivL~ dcvcloplllclllS. II 11\'l"IlIill"d III "IIIIIJII"I" Ih,' IIllh."III,\ 111l'III'Y

by the explicit definition of operators of state preparation and the calculus
with these, and by complements to the quantum mechanical theory of
measurements. In a second phase, it led outside the orthodox theory,
guiding the definition of a model founded on a concept of [particle +
medium] individual system that is microscopic by certain aspects while by
other aspects it is arbitrarily extended, cosmic. We have shown that this
model permits to better "understand" the principle of superposition, the
emergence of observable interference patterns of impacts, the orthodox
definition of the operations of state preparation by measurements and the
projection postulate, and the reduction problem.

The quantum mechanical calculi as well as the verbal accompaniments
of these convey only very mutilated indications concerning the underlying
probabilistic organization of the formalism. Vectors, operators, equations,
probability measures, operational definitions of measurements, arc
manipulated accordingly to algorithms. But the more globalized concepts
of an elementary quantum mechanical chain experiment, of a random
phenomenon (5), (5') of a basic probability chain (1'), (1"), of a probability
tree Y(P( IjI 0)' IjI », with their formal features and their specific semantic
contents, seem to have remained so far nonperceived. Not even the
algorithmic shadow (1) of only an isolated basic probability chain (I")

has been clearly recognized as a probabilistic whole. Afortiori, the distinctioll
between formal entities and factual entities remained so dispersed and so
vague that the central connecting role of the identities (7) has not becli
realized fully. This, no doubt, is due to the particular complexity of the
random phenomena (5) studied in quantum mechanics and to the unusulli
potential-actualization nature of the roots [eqmce] of the elemell (a I'y

events Vj produced by these, The conjunction of these two characters actcd
as a barrier.

We have overcome this barrier by a systematic reference to the basic
concepts of the abstract theory of probabilities and by an explicit S/}('Ci/li'll­

lion of the cognitive operalions by which the "ohserver," t!le "l'OI/Cl'/Jlllr,"

produces the entities to be qualified (quantum mec!lanil'lll siall's) lIl/d iI,,'
processes ()f qualification of these (measuremenl evoll/lilll/s), III the sccolld
part of this work, in the second issue of this journal dedicakd to Sir Karl
Popper, we shall gencralize this method, Thcrcby we shall obtaill :1 gClIl'I':1I
reprcsentation of the "rclativizcd descriptions" of any killd wh,',,·
remarkable relations with Sir Karl Popper's concept of pl'l'pclIsily will
appear. Bul the most effieiellt feat lire of the approach prllcliscd IIIIIIVCis 1IIl'
fact Ihat wc have takcll illtll aCL'Ollnlsyslcllialic:lIly II/I' Sfllll'I'lill/l' I/Sf'I'I'/s "/

till lilt' /,!I"I/III/II'l/ll ill/'oft'I'r/. This is wh:!1 hilS indll.:.:d 1111ol')!,alli/alioll, a
IIllifyili/'. 1'01'111,ililo IIIl' I,il,' III' 1IIIII>al>ili~;ti,':1I",,"'iIIIlIIS, 11I1:lgilll'II l>:dl''''11
III' :,11111(':;Oplll~ili,'a"'d 1111111,'I :Ik,' IIII'IIY1111'':I':Il'" 11'11111it I>yh-Ilillf', 111111111'
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air. What remains? A heap of randomly folded surface. Extend then to a
spacetime situation, to a sort of form-dance of the balloon, and the
example becomes still more sad.

Der Lattenzaun.

Es war einmal ein Lattenzaun, mit Zwischenraum, hidurchzushaun.
Ein Architekt der dieses sah stand eines Abends plotzlich da und nahm den
Zwischenraum heraus und baute draus ein grosses Haus. Der Zaun
indessen blieb ganz dumm, mit Latten ohne was herum. Ein Anblick
hesslich und gemein. Drum zag ihn der Senat auch ein. Der Architekt
jedoch entfloh nach Afri-od-Ameriko.

Christian Morgenstern, Galgenlieder Der Gingganz.
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