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An integrated view concerning the probabilistic organization of quantum
mechanics is obtained by systematic confrontation of the Kolmogorov formulation
of the abstract theory of probabilities, with the quantum mechanical representation
and its factual counterparts. Because these factual counterparts possess a peculiar
spacetime structure stemming from the operations by which the observer produces
the studied states (operations of state preparation) and the gualifications of these
(operations of measurement), the approach brings forth “probability trees.”
complex constructs with treelike spacetime support.

Though it is strictly entailed by confrontation with the abstract theory of
probabilities as it now stands, the construct of a quantum mechanical probability
tree transgresses this theory. It indicates the possibility of an extended abstract
theory of probabilities including explicit representations of the cognitive operations
nvolved in the probabilistic descriptions. So quantum mechanics appears to he
neither a “normal” probabilistic theory nor an “abnormal " one, but a pioncering
particular realization of a future extended abstract theory of probabilities.

The consequences of the integrated perception of the probabilistic organi=u
tion of quantum mechanics are developed constructively. The current identificu-
tions of spectral decompositions, with superpositions of states, are removed. Then:
{a) Inside the frontiers of the purely operational-observational orthodoy
Sformalism, operators of state preparation and the calculus with these are defined
consistently with the definition and the caleuwlus of quantum mechanical operators
representing measurable dynamical quantities. This permits to grasp the physical
meaning of superselection rules. Furthermore, a complement {o the quanium
theory ‘of measurements is obtained. These prolongations of the orthodoy
Sformalism bring forth a “probabilistic incompleteness' of the quantum theory,
(b} Beyond quantum mechanics as it now stands, a model is owtlined that renoves
this probabilistic incompleteness, “the [particle +medivm | individual niodel,”
microscopic by certain aspects and cosmic hy others.
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Globallv, the approach draws atiention upon the possibility and the interest
of a general representation of the descriptions of any kind founded upon the
explicit  specification of the epistemic operations—with their spacetime
features—by which the observer, who always is involved, produces the objects to
be qualified and the qualifications of these.

1. INTRODUCTION TO PART 1

Quantum mechanics yields probabilistic predictions concerning physical
events. Nevertheless, since already more than 60 years, the probabilistic
status of quantum mechanics constitutes an unsolved problem. It is
currently asserted that quantum mechanics is not a “normal” probabilistic
theory, because the various probability spaces defined by it cannot be
embedded into a unique probability space, while in all the other
probabilistic physical theories this is possible. Still more radically, certain
mathematicians hold that, notwithstanding the fact that it introduces prob-
ability measures, quantum mechanics simply is not a probability theory.

In what follows it will be shown that quantum mechanics is neither a
“pormal” nor an “abnormal” realization of the abstract theory of
probabilities, but a pioneering (particular and implicit) materialization
of a deep-rooted possible future extension of the abstract theory of
probabilities as it now stands, incorporating explicit representations for the
cognitive operations (with their spacetime structure) involved in a
probabilistic description.

The concept of a quantum mechanical probability tree, which is the
central construct of the space-time probabilistic organization of quantum
mechanics, has been already defined and utilized by us in previous
works.""> But we reiterate here its deduction because it yields the basis
necessary for all the further developments.

I am happy to have the opportunity to publish this work in the first
issue of Foundations of Physics dedicated to Sir Karl Popper’s 90th
birthday.

In the first place, Karl Popper has probably been the very first one in
the whole world who has globally perceived the structure, a very complex
structure indeed, that is introduced by any probabilistic conceptualization,
and which, curiously, still remains more or less hidden to thc mathe-
maticians, physicists, and philosophers. In Partl only the special

materialization of this structure that is involved in the formalism of
quantum mechanics will appear. But in Part I, in a subscquent ssue of

Foundations of Physics dedicated to Sir Karl Popper. inside oorelativized
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representation of the descriptions of any sort, will emerge a quite general
representation of the probabilistic descriptions, relativized to the epistemic
actions by which the observer—necessarily involved—produces the objects
to be qualified and the qualifications of these. This relativized representa-
tion of the probabilistic descriptions brings forth a significance of the
concept of probability measure which can be regarded as a confirmation
and a formalized development of the Popperian “propensity” interpretation
of the probabilities.'*”

In the second place, the two parts of this work considered as a whole
will strongly confirm Sir Karl Popper’s contention that quantum
mechanics, notwithstanding the striking novelty of its formalism, is much
less essentially singular, much more “normal” than it is thought to be.
However, it will appear that this is so not because it is possible to banish
the observer from quantum mechanics.'”” On the contrary, this is so
because, for the first time in the history of the representations of reality, the
quantum theory has captured and formalized a fundamental feature that
marks wuniversally the initial stage of any chain of conceptualization
whatever, rendering this phase nonremovably dependent on the observer (on
the “epistemic referential” chosen by him and on the spacetime features
of the corresponding epistemic processes). This, it will appear, does not in
the least hinder objectivity, but brings into evidence all the relativities of
objectivity.

2. THE QUANTUM MECHANICAL PROBABILITY TREES

2.1. The Abstract Theory of Probabilities, Physical Probabilistic Theories,
Quantum Mechanics

In Kolmogorov’s formulation of the abstract theory of probabilitics
any probability measure 7 is defined inside a probability space [U, 1, 7],
where U= {e,} (iel, I an index set) is a universe of elementary events ¢,
t is an algebra of events chosen on U, and = is a probability measure poscd
on t. Furthermore, the universe U is conceived to be produced by a random
phenomenon. But quite currently this supposed random phenomenon is
neither defined nor only symbolized. Throughout what follows this lacuna
will be compensated as follows.

Let us denote a random phenomenon by (P, U), where P is an “identi
cally” reproducible procedure, each one realization of which brings lorth
one clementary event e; € U, in general variable from one realization ol /7
(o another one (notwithstanding the supposed identity of the reiterations),
whereby the whole universe U is generated. In order (o express explicitly
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that each probability space is tied with some random phenomenon, we
shall always consider a complete “probability chain” where the probability
space is preceded by the symbolization of the corresponding random
phenomenon:

(P, U)~[U, 1, n] (1)

The abstract theory of probabilities does not describe specified
phenomena; it only introduces symbols and defines the caiculi with these
characterizing any probabilistic conceptualization of phenomena of any
nature. As soon as some specified domain of reality undergoes a
probabilistic conceptualization, an interpretation of the abstract theory is
obtained. Inside this interpretation, unavoidably, some probability chains
are supposed, but where, now, the constituting symbols point, more or less
explicitly, toward entities from the described domain of reality. So a
particular semantics comes in. But very often, when physical problems are
treated probabilistically, only the probability measures are defined
explicitly and are symbolized. The elementary events and the algebra of
events are usually indicated by words only, while quite currently the
random phenomenon which produces them remains entirely implicit.
However, by reference to the abstract theory of probabilities, it is obvious
that without a universe of elementary events, without an algebra of events
chosen on this universe, a probability measure simply is not defined. It
does not conceptually exist. A probability measure alone is not a concept,
it is a rag of a concept. Furthermore, by definition, in the absence of any
random phenomenon, a universe of elementary events cannot emerge,
hence no probability space either: The probability chains (1) are indivisible
molds imposed by the abstract theory of probabilities. So what are the
particular probability chains specific of quantum mechanics? What is the
specific semantics toward which point the quantum mechanical probability
chains?

2.2. The Quantum Mechanical Representation of the Probabilistic Aspects
from the Theory

For the sake of simplicity, throughout what follows we consider
exclusively the basic case of only “one microsystem,” whatever definition
one associates to this concept. Examination of this basic case will suffice for
conveying the essence of our view.

2.2.1. The Formal Quantum Mechanical Probability Chains.  Consider
aopaie (P o Ay where [ ) s the state vector assdpned at the time
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t to the considered microsystem S, and A is a Hermitian operator repre-
senting a dynamical observable—in the mathematical sense—defined for S.
For each such pair the quantum mechanical formalism defines a family of
probability densities n(y, @;), jeJ (J an index set) for the emergence of an
cigenvalue a; of the observable A when a measurement of A is performed
on S in the state |y ». Namely, it is postulated that the specified probability
density can be calculated by use of the formula (for simplicity we suppose
a nondegenerate situation)

vied,  n(y, a)=[<u;| ¥ (2)

where

u;» is the eigenvector corresponding to the considered eigenvalue
a;, determined, like a;, by the equation A |u;) =a; |u;) for eigenvectors
and eigenvalues of A. Usually the algorithm (2) for the computation of
probability measures is postulated without any explicit specification of the
probability space where the measure (2) is incorporated, nor, a fortiori, of
the random phenomenon from which this space stems. But it is obvious
that the space which contains the measure (2) can be represented by the
writing

La. Ta, n(Y, A)] (3)

where the universe of elementary events a = {a;, je J} (J an index set) is
the spectrum of the observable A, , is the total algebra of events on «, and
(Y, A) is the probability density measure on 1, determined, via the law of
total probabilities, by the elementary probability density (2). So the wholc
probability chain corresponding to a space (3) can be represented by the
writing

[{i!b[j>: AJ Tk [(J, Ta: ﬁ(!ﬁs A}] { Ir}

This is the researched integrated representation of the formal quantum
mechanical probability chains, achieved with the help of the quantum
mechanical descriptors.

2.2.2. The Factual Quantum Mechanical Probability Chains. The
formal chains (1) are only a coded representation ol other, fuctual
quantum mechanical probability chains, Let us identify now (hese factual
chains,

Phe Factual Quantionr Mechacal Probability Spaces. We postpone
for (he moment the speciheation ol the Tactual random phenomenon
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corresponding to the symbol (¢ ), A) from the chain (1') and we consider
first only the space (3) [a, t,, n{y, A)] involved by this chain. The
corresponding factual space can be immediately specified as follows:

LV (D, ta) 14, m(i, M y)] {3%)

where A designates an observable and numerically valued physical aspect
of a macroscopic device D , able to generate certain materializations of the
numerical values to be assigned to the quantum mechanical observable (in
the mathematical sense) A, namely “needle positions” of D ; V (D, 1,)
is the universe of all the possible values ¥, of the physical aspect 4 of D,
a universe brought forth by “one” realization of what is globally called a
“measurement process” of the observable A, consisting by definition of a
very big number of reiterations of a registration of a value V., operated
each time by starting from the state of S symbolized by the state-vector | >
newly prepared and each such registration covering some spatial domain d
and beginning at a time 7 when the state vector of S is [/ > and then lasting
for some nonnull time interval (¢, —¢) >0 (let us denote this measurement
process by M, (y, D ,)); 7,4 is the total algebra on the universe V (D, ,);
n(y. M ,) is the density of the probability measure put on 7, depending on
the state labeled by the state-vector i) ) and on the measurement process
M , performed on this state.

The probability measure n(y, M,) on the algebra 7, from the
probability space (3') is determined, via the law of total probabilities, by
the probability density z(y, M, ¥;) postulated on the universe
Vi(D,, ty)={V,, jeJ} of elementary events from this space.

The Factual Quantum Mechanical Random Phenomena. What is the
factual random phenomenon that brings forth the universe of elementary
events V (D, 1,)={V;, jeJ} from a factual quantum mechanical prob-
ability space (3')? It seems that up to now nobody has tried to specify
explicitly thus random phenomenon, not even the rare authors who have
developed explicit researches concerning the probabilistic organization of
quantum mechanics (Mackey,'® Gudder,”’ Suppes,"'”’ etc.). However, as
soon as it is researched, the definition can be easily constructed. It is then
found to possess a very complex structure that brings in a sequence of three
partial procedures covering three distinct spacetime domains:

The first partial procedure is the preparation operation Pli,,)
which, at its final moment ¢, (supposed to be delinable), mtroduces an
initial state ol S represented by the state vector (s, [ 0 this
operation covers some nonnull spacetime domm | e i, |,

| rete2 i qz WEE paldin) ‘“DMW%MW s

o % o /4%&4,2‘&2”'“_4 :
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— The second partial procedure, which does not necessarily exist, is

a process E(H, ty, t) of evolution of the initial state of S, leading at the

time ¢ to the state with state-vector (¢)> = i >. When it does exist, this

evolution (formally described by the writing | > =T(H, t,, t) |\, > where

T(H, 1y, t) is the acting propagator) covers some new spacetime interval
[Arx At]g, where dt=1—1.

— The third partial procedure is the measurement operation
M ,(y, D) from the definition of the observable space (3'), performed on
the state of S symbolized by the state vector ¥ ).

As soon as the time >t is fixed, the succession
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P=[P(Yo), E(H, 1y, 1), M ,(, D )] (4)

constitutes “one identically reproducible procedure P,” each reiteration of
P reestablishing the origin of times 7. Note that the succession of only the
first two partial procedures from (4) can be regarded as a preparation
operation P(y) producing the studied state represented by the state vector
[W>=T(H, ty, 1)) |{s>. So we can also write

P=[P(y), M (y,D,)] (4")

where the initial operation P(y,) and the evolution symbolized by
E(H, t,, t) become implicit. _

Each realization of the procedure P brings forth one, V;, among all the
various possible elementary events from the universe of elementary events
U=V,. Thus we are finally in the presence of a random phenomenon
(P, U) in the standard sense of the term, namely

(P, U)=([P(o), E(H, 1o, 1), M (Y, D 4) ], V 4(D 4, 1,1)) (5)

or
(P, U)=([P(y), M,(y), D)1, V4(D,, 1)) (5°)

The Factual Quantum Mechanical Probability Chains. So the [actual
quantum mechanical probability chains can be written as follows:

([PW), M(y, D)1, V(D oy, b))~ [V(Dy, t4), T, mlih, M ) | (1

The expressions (3') to (17) indicate now explicitly and exhaustively
the specific semantic contents of the quantum mechanical probability
chiins,

2.2.3. The Connection between the Factual and the Formal Quantum
Mechanical Probability Spaces. How can we transhite a lactual observable
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quantum mechanical probability space into the corresponding formal
space, so as to be able to apply to it the quantum mechanical algorithms?

In quantum mechanics each eigenvalue a,ea is posited to be
calculable as a function f,(¥;) of the observed factual value
VeV (D, t;) which is labeled by the same index je J:

a_;':,f.‘f(Vj] (6)

Furthermore, each observable elementary probability density w(y, M ,, V)
is posed to be numerically equal to the corresponding formal elementary
probability density, i.e, for any [y> and any jeJ, it is postulated that
(degenerate cases being excluded)

wW, M, V) =l 4) = [ <9I’ (7)

where [u;) is the eigenvector of the observable A corresponding to the
eigenvalue a; = f,(V,). (Notice that thereby a; can be regarded as a random
variable on the factual space (3'), a space that is not defined inside the for-
malism). In this sense, the formal probability density (2) is a “predictional
law,” verifiable with the help of the relative frequencies of emergence of the
observed values V/,, at the limit of large numbers.

The equations (6) and (7) form the key of the code which translates
the factual observable quantum mechanical probability space (3’) into the
formal space (3). Any quantum mechanical prediction belongs to some
formal probability space (3) corresponding to a factual space (3').

2.2.4. The Processual Roots of the Quantum Mechanical Elementary
Events in the Sense of Probabilities. The expression (5) of a factual quan-
tum mechanical random phenomenon involves reiterations of a chain of
operations and processes:

[(preparation operation P(i/,))-(evolution process E)-(measurement
operation M ,)-(registration of a needle position V, of the utilized
device D )] (eqmce)

((eqmce): elementary quantum mechanical chain experiment): These are
the processual roots of the quantum mechanical elementary coents in the
sense of probabilities. An elementary quantum mechanical chain cxperiment
possesses & remarkable unobscrvable dept wherelrom cmerpes o the
observable only the extremity V. je /. that contributes fo the construction
of the Tactual observable universe of clementary events V(b))
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{V,, je J}. Each observable quantum mechanical “event” (nonelementary)
from an algebra 7, from a factual quantum mechanical probability space
(3') contains inside its semantic substratum all the unobservable chains of
operations and processes forming the elementary quantum mechanical
chain experiments that end up with the registration of a needle position V;
contained in that factual observable quantum mechanical event. So any
quantum mechanical prediction concerns either an elementary quantum
mechanical chain experiment, or a union of such experiments. The elemen-
tary quantum mechanical chain experiments (eqmee) yield the “‘fibers” out
of which is made the factual substance of the quantum theory.

2.2.,5. Partial Conclusion. We are now endowed with an explicit
knowledge of the relations between, on the one hand, the basic abstract
concepts of the probabilistic conceptualization (identically reproducible
procedure P, universe of elementary events U, algebra of events 1, prob-
ability measure 7), and, on the other hand, the quantum mechanical formal
descriptors, state vectors [y >, observables A, eigenvectors lu; >, and eigen-
values a;. It appears that quantum mechanics contains definite realizations
of each basic concept from the abstract theory of probabilities. So, in this
sense, it can be asserted that quantum mechanics is not an “abnormal”
probabilistic theory. Furthermore, we have also explicated the specific
semantical content assigned by the quantum mechanical description to the
basic abstract probabilistic concepts. Now, do these first results entail that
quantum mechanics is a “normal” probabilistic theory?

2.3. The Probability Trees of State Preparations

We arrive now at the crucial point of this section, where new consc
quences of the preceding analysis will manifest themselves.

We have shown that any quantum mechanical prediction concerns one
or several elementary quantum mechanical chain experiments. We shall
now show that the ensemble of ali the elementary quantum mechanical
chain experiments falls apart into classes of meta-structures possessing
treelike spacetime organization.

Let us fix a preparation P(y,), a time interval Ar=1r¢ 1, and a
Hamiltonian H. That is, let us fix the transform iy > = T, 4, 1) |\, > ol
[y >. Consider now the ensemble of all the probability chains (5) or (5')
corresponding to the fixed pair (P(ir, ), [ D) and to afl the distinet dynamical
observables A, B, €, Do deflined in quantum mechanies: The chains [rom

this ensemble constitute together a certain wnitre, because ol their common
provenance (Pl [ o0 What i the spacetime strocture ol this unity?
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For all the chains from the considered unity, the spacetime support of
the operation of sate preparation P(i),) and of the Schrédinger evolution
T(H, 1y, 1) |Yo>]1= 1>, t=1,, of the prepared state, which follows this
operation, is, by construction, the same, a common spacetime trunk. If in
particular [ > =, >, ie, if t=t, then the trunk is reduced to the
operation of state preparation alone.

Consider now the spacetime supports of the measurement processes
M , involved in this unity. The ensemble of these processes splits into sub-
ensembles M ;, M ,,... of mutually “compatible” processes of “measurement
evolution” corresponding to mutually commuting observables.

Contrary to many very confusing considerations concerning “suc-
cessive measurements of compatible observables” (versus the projection
postulate) that can be currently found in the textbooks of quantum
mechanics, let us stress this; Each one measurement evolution from the
subensemble M is such that each one registration of a value ¥, of the
“needle position” of the macroscopic device D, associated with M,
permits one to calculate, from the wunigue datum V;, via a set of various
theoretical connecting definitions (6) a, = f,(V,). b; = fa(V}),..., all the
different eigenvalues a;, b,,... labeled by the same index j, for, respectively,
all the observables A, B,.. measurable by a process belonging to the class
M . This entails that for all the commuting observables corresponding to one
same class M y, the process of registration of a value of the “needle position”
of the device Dy can be one common process covering one common space-
time support (no succession whatever is necessary).

Which is not possible for two noncommuting observables belonging to
two distinct classes M, and M,

This is what is commonly designated as 'Bohr complementary,” nothing
else.

Now, this entails that, globally, the ensemble of all the factual prob-
ability chains (1”) corresponding to a fixed pair (P(i,), | ) constitutes a
unity, a meta-construct, with a branching, ireelike spacetime structure. Let
us symbolize this treelike structure by 7 (i, y) and let us call it a “quan-
tum mechanical probability tree” (in short, a probability tree). (Since all
the probability trees involving the same studied state vector | > introduce
the same branch structure, carrying on top the same probability spaccs, in
contexts where the distinction between the state vector of the initially

prepared state and that of the studied state is not relevant we shall assume
that | > = |y, > and the abbreviated symbol .7 () can be used)
So the pairs (P(y,), ) define, on the cnsemble ol all the quantum

mechanical probability chains, o particion e probalaliey teees 0 fortrond,
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Fig. 1. A quantum mechanical probability tree 7 (P(yg), [¢ >)

they define such a partition also on the ensemble of all the elementary
quantum mechanical chain experiments (eqmce) out of which the quantum
mechanical probability chains are made.

Figure 1 provides a simplified example of a probability tree of a statce
preparation, with only four observables, and making use of somewhal
abbreviated notations: 4, B, C, D are physical observable aspects (“ncedlc
positions” of macroscopic devices) corresponding to the quantum mech:ni-
cal observables A, B, C, D, respectively. The measurement M, .,
corresponds to two commuting observables C, D: (the commutator of ('
and D is zero, [C, D] =0), while M ,, M, correspond to two noncommul.
ing observables A, B with: [A, B]#0. The notations (3'),, (3'), and
(3")c, p indicate the observational spaces (3') corresponding, respectively. (o
the measurement processes M ,, Mz, and M, performed on the stale
represented by | > =T(z,, t, H) |/, ». Each one of the spaces (3') emerpes
at some specific time ¢,, tz, top. The commuting observables €', D
generate together one common branch producing an obscrvable space (1)
more detailedly characterized, namely with respect to both observables
involved. A(P(y,)), 4(E), 4(P()) indicate respectively the spacetime
domains covered by the process of: preparation P(i,,) of the state with
state vector [if,»>: evolution (1, ¢, H) represented by T(sy, 1, 1) |,
[t >0 o, globally, preparation Py = [ Plyry), Vit 1, 1Y ] ol the state
with state veetor [y 0 A ), HBo), A(CD ) indicated respectively
the spacetime domains covered by the measorement evolutions M, M,
M.,



1398 Mugur-Schiichter

A quantum mechanical probability tree is a remarkably comprehen-
sive metastructure of probability chains. Most of the fundamental algo-
rithms of the quantum mechanical calculus which combine cne normed
state vector, with the dynamical operators representing the quantum
mechanical observables, can be defined inside — any — one tree

T (PWo). W)

— the mean value of an observable A, in a state with state vector
[y >, namely

CYLA WD, VgD, VA

— the uncertainty theorem, for any pair of observables,

Yl (AAY? Y5 bl (AB)? i) = || (i/2)(AB—BA) [y 3| = (1/2)(h/2m),
Yy, YA, B

— the principle of spectral decomposition (expansion postulate)

|'I£’> o Z c(lﬁ’ a}} “_,.l’>1 V |u[j >'| VA: A !u_.r'> = aj |le->,
i
(c(i, a;): the expansion coefficients)

which permits one to calculate the probability density n(|yf >, a;) via the
probability postulate

7 @) = <, | W12 = et a2

— and, finally, the whole quantum mechanical “transformation
theory” from the basis of an observable A, to that of an observable B

C(!’lr/’ bk) :"Z gkjc(lﬁle a_}"]?
=
VA, B:A|lu;>=a;|u;>, and B v, > =b, |v, >, Vied, Vke K

(where J, K, are the index sets for the eigenvalues of A, B, respectively, and
a,;= vy | u,» are the transformation coefficients).

But as soon as either the principle of superposition or the orthodox
quantum mechanical representation of successive measurements come into
play, the corresponding quantum mechanical algorithms cease (0 be
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embeddable into one single probability tree: there the embeddability into
one tree hits a limit. Several trees have to be combined. So a still higher
degree of complexity than that of only one probability tree is formed
and acts inside the organization implicitly reached by the probabilistic
conceptualization hidden inside the quantum mechanical formalism. The
quantum mechanical formalism contains implicit calculi with whole
probability trees.

2.4. Integrated View

The probabilistic organization of the quantum theory, when it is per-
ceived in a globalized, integrated way, is found to consist of the ensemble
of all the probability chains of the type (1')}-(1") partitioned in subensem-
bles of probability chains possessing a treelike spacetime structure, each
one of these corresponding to a pair (P(,), | >) of an operation of state
preparation and a studied state. This partition is a partition also of the
ensemble of the factual elementary quantum mechanical chain experiments
which constitute the individual fibers of the quantum mechanical probability
chains (1'), (1”). So furthermore it is a partition also of the factual observable
extremities of these elementary quantum mechanical chain experiments,
namely the registered needle positions V;eV , of the utilized devices D ;.
The factual registered “values™ V,e V ,, which seemed to float freely on the
surface of the observable (like nenuphar flowers seem to float freely on the
reflecting surface of a lake) expose now their fixtures to stalks of operations
and processes rooted into trunks of initial operations of state preparation.

How did we obtain this integrated perception of the probabilistic
organization of quantum mechanics? We have performed just an attentive
analysis of the connections between Kolmogorov’s standard fundamental
probabilistic concepts (identically reproducible procedure, universe of
elementary events, an algebra of events on this universe, a probability
measure on this algebra), the main descriptors of the quantum mechanical
formalism (state-vectors, operators, eigenfunctions), and the factual coun-
terparts of the quantum mechanical writings. This, because of the spacetime
characteristics of the factual counterparts of the quantum mechanical
writings, brought forth, with a sort of inner necessity, the probabilistic
meta-construct with treelike spacetime support described above. But this
metaconstruct of distinct probability chains, though it has been produced
by systematic confrontation with the standard probabilistic concepts,
transeends the abstract theory of probabilities as it now stands: So far (he
most complex basic probabilistic structure explicitly defined in the theory
of probabilities is one probability space. Not even the notion ol one
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probability chain is explicitly defined as a monolithic construct. A4 fortiori,
the concept of a probability tree, which connects several irreducibly distinct
probability chains, is not defined in the present theory of probabilities.
Are these novelties probabilistic “anomalies”? Inasmuch as they are
rooted into the present abstract theory of probabilities, it seems more
adequate to regard them as germs of a possible extension of this theory.

3. TOWARD AN EXTENDED THEORY OF PROBABILITIES:
PROBABILISTIC META- AND META-METADEPENDENCE

We shall now show that the concept of quantum mechanical probabil-
ity tree indicates the definibility, probably in quite general abstract terms,
of two new sorts of “probabilistic dependences,” placed—with respect to
the Kolmogorov definition—on two hierarchically connected higher
descriptional levels, a metalevel where a probabilistic connection between
distinct probability chains appears, and a meta-metalevel where distinct
whole trees appear to be probabilistically related. These metaprobabilistic
qualifications appear to be intimately related with a radical distinction
between operations of state preparation and operations of measurement,
and, correlatively, with the differences and relations between the principle
of superposition and the principle of spectral decomposition.

These results, while they clarify and deepen fundamental features of
the quantum theory, point toward the necessity and the possibility of a
deepened abstract theory of probabilities: a theory of probabilities that will
incorporate explicitly the cognitive physical operations—with their
spacetime characteristics—by which, at the most fundamental level of the
action of extraction of knowledge, the observer produces the objects to be
qualified and obtains the very first qualifications of these objects.

3.1. Probabilistic Meta-dependence via a Common Potentiality

The fact that the quantum mechanical usage of probability measures
exceeds the “classical” theory of probabilities has already been perceived
long ago by several important authors (Mackey,® Gudder,® Suppes,‘'®’
Mittelstaedt,'"!? Van Fraassen and Hooker,"'” etc.). But this transgression
is usually mentioned in negative terms: “nonembeddability” into a unique
probability space, of the quantum mechanical measures corresponding to
noncommuting observables, which is an “anomaly™ that “hinders™ a classi-
cal definition of a conditional probability for two incompatible cvents, cte.).
Recently L. Cohen''®’ has, on the contrary, shown by very interesting
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calculational arguments that quantum mechanics suggests a possible exten-
sion of the standard theory of probabilities. The concept of probability tree
permits one to strongly develop this constructive perception.

The quantum mechanical transformation theory (e(y, by)=
20y, a5), YA, B: Alu;y =a; lu), Blo)>=b,|v,), Vjeld, VkeK, J, K
index sets, A,B two noncommuting observables, o= v, |u;) the
transformation coefficients) permits one to entirely determine, from the
knowledge of the probability measure 7n(y, a,) from one branch of a
probability tree, any other probability measure n(y, 5,) belonging to
another branch of that same tree. Indeed the equalities [(c(y, b,)|* =
IX, ac(i, @))% YjeJ, Vke K, are equivalent to the specification of a
functional relation

n(Y, by) = FQM[TT(!ffs a_),-)]

between the probability measures corresponding to the noncommuting
observables A and B. But the standard concept of functional relation
between two probability measures does not singularize the particular sort
of probabilistic connection between two probability measures introduced
by the quantum theory. Nor does it permit one to recover it fully, as
L. Cohen has shown ([Ref. 13, pp. 991-93). As it is stressed by the index
QM, we are in the presence of a specifically quantum mechanical
functional relation. What status can we assert for it?

According to the present theory of probabilities the concept of
“probabilistic dependence” is by definition confined inside one probability
space where it concerns isolated pairs of events. Two events are tied by a
“probabilistic dependence” if knowledge of one of these events “influences™
the expectations concerning the other one. So the relation n(y, b,)=
Fom [m(Y, a;)] of mutual determination of the probability measures from
a quantum mechanical probability tree can naturally be regarded as a
“maximal probabilistic metadependence™:

— “maximal” because it consists in mutual determination

— “probabilistic” because, though this determination is a certainty
about “influence,” nevertheless it concerns probabilistic constructs;

— “metadependence™ because it concerns, not pairs of cvents [rom
onc space, but globally pairs of probability measures on entire algebras of
events, which, with respect to events, arc metacntitics.

Now, if this view and language arc accepted, what has just been
named the probabilistic metadependence defined by the quantum mechani
cal transformation theory appears as veflecting the studied stare with state
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vector |y from the common trunk of the tree. This state that stems from
a preparation operation P(i,) and then might have evolved accordingly to
some law |T(¢tq, t, H) [/o> = |{ >, but that has never yet been observed, has
to be conceived of, in consequence of this lack of previous qualifications,
merely as a monolith of still nondifferentiated observational pofentialities
that sets a genetic unity beneath the various incompatible measurement
processes of actualization of that or that particular observational poten-
tiality, leading to that or that acrualized observable space (3'). Though in
quite different contexts, Bohm,"" de Broglie,""> Primas,""® as well as
other authors, have also explicitly stressed the multiple potential meaning
of the quantum mechanical concept of state. Here we reexpress it as
follows.

The probability tree of a studied state with state vector i) is a complex
unity which, with respect to the observable manifestations of a microsystem,
possesses a ‘‘potential-actualization-actualized character.”

The quantum mechanical functional relations F ), between the probability
measures from irreducibly distinct observable spaces—considered as
wholes—belonging to a same probability tree, reflect the genetic unity of
these spaces via the common observaticnal potentialities captured inside
the state from the trunk of the tree. The quantum mechanical transformation
theory involves new probabilistic features that are neither probabilistic
“anomalies” nor mere numerical algorithms. They are a mathematical
description of particular realizations of probabilistic metaproperties,
brought forth by a growth of the probabilistic thinking that happened inside
the process of conceptualization of the microphenomena: a growth that
draws attention upon the necessity, at the most basic level of description
where no previously elaborated conceptualization is presupposed, to
represent and to study the cognitive operations by which the observer—who
necessarily exists and acts—produces the objects to be qualified and the
processes of qualification of these. Indeed, these operations themselves
possess physical characteristics, in particular spacetime supports, that entail
nontrivial consequences on the probabilistic descriptions constructed with
their help.

3.2. Probabilistic Metaproblems

The probabilistic metaproperties mentioned above, as soon as they are
perceived, involve certain probabilistic metaproblems that will have (o be
explicitly considered, together with the reduction problem and the ather
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problems raised by the probabilistic character of the quantum theory. An
example is this.

The passage from the monolith of observational potentialities labeled
by a state vector i), to that or that process of actualization M , of that
or that particular observational potentialities contained in |y >, involves
from the part of the observer an act of free choice of one among all the
possible measurement processes M ,. In this sense the nature of this
passage is not “purely physical”; it is a phenomenon that depends also on
the observer’s “free will.”

The quantum mechanical transformation theory involves an intervention
of the observer’s mind already before the final act by which a registered
eigenvalue is perceived by the human observer.

This introduces an anterior supplement to the so amply discussed reduc-
tion problem (Wigner's Friend, etc.). Indeed:
What is the relative frequency

ﬂ{Mm’w )

of the occurrence of a given measurement process M, once the state [ >
to be studied has been prepared? Obviously this relative frequency has to
be radically distinguished from the “conditional” relative frequency

[n(y, a))/A])=n(¥, a;)]

of the occurrence of a given eigenvalue a, of the observable A, once the
choice of measuring upon i) the class of observables compatible with A
has been made. 1t seems likely that the relative frequency of choice of a
measurement process M ,, so n(M /i), such as it emerges spontancously,
because it involves the observer’s free will, simply cannot be defined at all
in a way that is stable, “identically” reproducible, so as to permit the asser
tion of a probability “law™ in the sense of the theorem called the law of big,
numbers. So this relative frequency cannot be inserted into the structure
called a probability space. The concept of a probability space is very
restrictive; it involves severe conditions of “identical” reproducibility.
The space [U, ] where U is a universe of elementary cvents cach of
which emerges as the result of {first: [a realization of an operation
P(y) = [P(y), T(H, ty, 1) o> =¥ >] which prepares a state [y > (o be

studicd ] and alterwards: [a choice of a measurement process M |} and
is an algebra of events on the universe U, might simply not be
“probubilizable™ space, if the relative frequency ol the choice of ameasure
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ment process M s considered such as it emerges naturally in the mind of
it on it observer, ice. (in the absence of any conventional constraint).
Now, 1l this nonprobabilizable character is admitted, then, from the view-
point ol probabilities, it introduces a solution of continuity between the
mumnenical estimations from the different observable branch spaces of a tree,
a kind ol noncomparability of the probability measures from these spaces.
Ilis seems fo contradict the quantum mechanical algorithms: As long as
we do not possess some  definition for the conditional probabilities
(M, Ay and (M /), with [A, B1#0, what content can we assign to
(e ussertion that the measures n(y, A) = {n(y, a;,)=|c(}, a))|*} and
w8y V(. by =le(p, by)|?} are connected in agreement with the
quantum mechanical transformation relations c(y, b,) =23 ay,¢(, a;)? As
long as we do not assert some definite ratio for the relative frequencies of
emerpence of the two measurements M, and My, how is it possible to
make such precise numerical assertions involving the relation between
(he relative frequency of an event b, and the relative frequencies of the
events o,

[ubkin,''" without detailing all the dimensions of the conceptual
situation, has nevertheless perceived the necessity of some conventional
substitute for the otherwise unrealizable definition of a conditional prob-
ability measure 7(M 4,/¢/). And indeed the quantum mechanical formalisin
certainly does involve such a conventional substitute: quite probably, a
decision of equipartition, (M ,/)) = constant, YA (and V [/ > ), in order to
“smooth out” the unpredictable effects of the free choices of a measurement
process, thus offering expression exclusively to the “objective” factors.
(A dccision of equipartition can be stated in terms of “certainty,” which,
up to normalization, amounts to the same: Once [y ) has been created,
suppose first that the measurement M , follows certainly and calculate the
expansion coefficients ¢(y, a,), so the individual probabilities n(y, ;) =
le(i, a;-]|2; then suppose that M follows certainly and calculate the coef-
ficients ¢(y, b,), so the individual probabilities (|y >, b) = [e(¥, b,)|*; then
verify the assertion n(y, b, )= |c(¥, bt =X, 2y, a;)|* involved by the
quantum mechanical transformation theory.)

But Van Fraassen and Hooker,''?! quite curiously, have formulated a
purely mathematical argument for the “impossibility” of a conditional
probability measure w(M/ys), again without stating explicitly the
epistemological dimensions of the problem (this impossibility, however, is
necessarily relative to some presuppositions, and these might not possess
an unavoidable character).

Anyhow, the preeeding example shows thal the quantum mechanical
transformation theory, while it suggests a possible extension ol the concept
of  probabilistic  dependence, involves correlatively ot swpecilie
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probabilistic problems that would have to be dealt with inside such an
extension.

3.3. The Germ of a Concept of Probabilistic Meta-Metadependence

3.3.1. State Preparations versus Measurements. The absence of an
integrated perception of the probabilistic organization which underlies the
formalism of the quantum theory not only hinders a clear understanding of
the novelties and of the problems invoived by the theory, but furthermore
it entails insufficiencies inside the theory itself. The most important among
these stem from the tendency to confound the operations of state prepara-
tion, with measurements, that is, to mix up temporal orders which, quite
essentially, do act.

Absence of Mathematical Representation For the Operations of State
Preparation. In quantum mechanics as it now stands, the degree of defini-
tion of the operations of state preparation is much lower than that of the
measurement operations. Correlatively, the mutual characterization of
operations of state preparation and of measurement operations is very
imperfect.

The measurement operations are quite explicitly represented by
Hermitian linear differential operators and by a well-defined calculus with
these. The compatibility or incompatibility of two measurements has been
recognized and formally described, and consequences have been drawn
systematically from this. On the contrary, as far as we know, no clear-cut
and unanimously practised definition does as yet exist for the concept of

- state preparation. A fortiori, the operations of state preparation are not

cndowed with a mathematical representation clearly assigned to them.
They are not even systematically symbolized:

Quantum mechanics as it now stands does not specify a calculus with,
specifically, operations of state preparation, distinguished from the calculus
with measurement operations and related with it.

The source of this situation can be associated with the Copenhagen
[ormulation of the postulates of quantum mechanics which interlaces the
coneept of state preparation with that of measurement. Indeed, in the
Copenhagen formulation of the postulates of quantum mechanics, certain
operations of state preparation are defined. These consist of a measurement
cvolution M, Tor an cipenvalue registration corresponding to some observ-
able A the fmal phase of repistration included  such an evolution being
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postulated (the projection postulate) to leave the studied system .in a state
describable by the “normalized” eigenvector |u;) of A corresponding to the
registered eigenvalue a;. (For simplicity, we do not singularilze here the case
of an evolution corresponding to a complete set of commuting observables,
as it is usually done). Now, is this definition conceived to designate only a
subensemble of the ensemble of all the possible operations of state prepara-
tion, or is it conceived to exhaust this ensemble, so, to entirely absorb the
concept of state preparation into that of measurement? When one re‘ads the
various papers that have been written on this subject, and quite particularly
the current textbooks, the answer is far from being clear. Anyhow, a
general distinct definition of what is to be called an operation of state
preparation, in contradistinction to what has to be called a rneasurcmcr}t
operation, is uniformly absent. The term “preparation,” nevertheless, is
uniformly present.
However, notice the following:

Mere contemplation of the figure representing a probability tree
makes it obvious that, by the very definition of the words, an operation of
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state preparation P(y,) is a primary operation of generation of an object
for subsequent examinations, while the operations of measurement are
secondary operations of qualification of this object (Fig.2). It jumps at
one’s eyes that the two concepts of state preparation and of measurement
concern two essentially different phases of the development of any quantum
mechanical elementary chain experiment, ie., of the emergence of any
quantum mechanical elementary event in the sense of probabilities. Two
phases placed at two different temporal levels of a tree (4t =1,—t’ for the
operation of state preparation and At=1t,—1, for an operation of
measurement of an observable A) possessing essentially different cognitive
roles and which are hoth necessarily present inside any process of
emergence of a quantum mechanical elementary event in the sense of
probabilities. Any “measurement,” by the very definition of the concept,
presupposes necessarily some previously produced state, thus some “opera-
tion of state preparation,” deliberate or spontancous, natural. While an
operation of state preparation presupposes nothing, it is by convention the
Jirst operation that is considered, the origin, the zero of the considered
chain of phenomena leading to one quantum mechanical elementary event
in the sense of probabilities, a;=f,(V,).

— Furthermore, in order to be able to specify a definite eigenvector
u;> of an observable A as being the “normalized state” in which the system
is left, it is indeed necessary to obtain a final information that singularizes
a definite eigenvalue a;, thus labeling observably the asserted state. But if,
for this aim, an interaction is produced that involves the state to be labeled
itself, then, in general, this state is destroyed. So, as is well known, some
substitute must be found (“nondemolishing™ procedure) that preserves the
state to be labeled (as in the case of the Stern—Gerlach method for spin 1/2,
or as in the case of indirect identifications, by the registration of photonic
spectra, of electronic states bounded inside atoms). However, such sub-
stitutes cannot be found for any sort of measurement. Therefore the
category of measurements that can act as preparations of known states is
very limited.

— Correlatively, in a certain sense, the eigenvectors of most
quantum mechanical observables (of all the observables with continuum
spectrum, position, momentum, all the Hamiltonians corresponding to
nonbounded evolutions) simply do not accept, stricto sensu, normalization,
so they cannot rigorously play the role of a state vector also. This is
currently called “the problem of normalization” and is “solved” by
proving that any cipenveetor can be arbitrarily well approximated by a
corresponding cipendilferentianl that is a normalized state vector. But it
seems very awhwad mdeed 1o fownd a postudate on dapproximations.
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——  Finally, when one considers the ensemble of all the conceivable
quantum mechanical states, in particular the free states, it seems quite clear
that—simply by lack of any connection with some measurement evolu-
tion—an infinity of states of which nothing whatsoever hinders the
preparability and which are currently considered in the quantum theory, do
not accept, neither rigorously nor even grossly, a description in terms of a
definite eigenvector of some observable. (For instance, produce, on the left
side of a screen with three somewhat extended holes in it, an arbitray but
definite electronic state; what is the state on the right side of the screen?).
The elimination of all these states would be a huge amputation of the
theory. This, no doubt, is why most authors consider that in general a
preparation operation is not also a measurement operation.

In these conditions it seems natural to try to establish a clear-cut
definition of the specificities of the operations of state preparation with
respect to the operations of measurement.

With this aim in mind, we consider preliminarily the following ques-
tion. Are there reasons, perhaps, that oblige one to work with a definition
of the operations of state preparation that is tied with the eigenvectors of
the quantum mechanical observables, notwithstanding the fact that such a
definition is doubly flawed, in the first place by a character of approxima-
tion that seems unacceptable in basic assumptions and in the second place
by obvious restrictions of the factual possibilities? This question will be
decomposed into two other ones:

Is it perhaps impossible to associate a mathematical representa-
tion to a state that is physically preparable but is not tied with some
cigenvector? The answer will be found to be negative.

Then, for what other reasons did the physicists from the
Copenhagen school introduce the group of concepts constituted of the pro-
jection postulate and the definition of preparations by measurements? They

certainly were not naive thinkers, so they must have felt some compelling
motivation that has to be identified and explicitly dealt with. A possible
explanation will appear later, in Sec. 5.

I'he Result of Any Operation of State Preparation Can be Represented
by a State Veetor. The quantum mechanical formalism seems to involve a
possibility which has never before been incorporated into the formal con-
strnction of o physical theory. Namely, the possibility to initially “deline™
an enbity 1o be studied by an exclusively physical operation i a strictly
conceptual way, a purely factual way, quite mndependently ol both the
knowledpe of the result produced by this operation and the aperations per
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formable on this result by which subsequently the result will be qualifiable.
The formalism of quantum mechanics permits one to envisage to
individualize a state of a microsystem, to form it out of the continuum of
“reality,” to capture it as a monolith of physically determined but as yet
entirely unknown observational potentialities, and to keep it available for
any future actualizing examinations, without strictly nothing presupposing
about “how” this state would appear under that or that subsequent
examination. Indeed precisely this is what happens each time an operation
of state preparation is performed that is defined by operational instructions
entirely independent of any measurement operation: Initially, the state
produced by this operation is devoid of any expressed definition of its own
(mathematical, or not), distinct from the definition of the operation of its
preparation. For instance, consider again the electronic state imagined
above, produced by passage of an arbitrary but definite previous state
through a screen with three somewhat extended holes in it; or imagine
some definite interactions which generate still nonidentified elementary
particles (thus a fortiori still unknown states of these). Now, as announced,
the question is whether it is possible to construct a mathematical represen-
tation connectable with such a state.

Let us just label a priori by the signs [y, ) and P(y,), respectively, the
considered state and the operation of preparation that defines it. Since the
operation of preparation labeled P(y,) is instructionally defined, it is
known how to reproduce indefinitely the state labeled by the symbol |y,
notwithstanding the fact that this state is still devoid of any description of
its own (not of its operation of preparation). So nothing whatsoever
prevents one from establishing experimentally probability distributions
(Yo, A)= {n(o, a;)=|c(y, @;)|’} corresponding to this still non-
described state for as many quantum mechanical observables A as one
desires (an approach similar to that for the identification of unknown
nuclear potentials via experimental estimations of cross sections). This
means that, in the expansion o> =3, c(¥y, @) lu;» of the unknown,
researched state-vector |if,), on the basis of eigenvectors {lu,>} corre-
sponding to any given quantum mechanical observable A, the real factors
lc(g,a;)]  from the complex expansion coefficients c(Vq, ;) =
le(g, a)) [/ can be determined experimentally.

What about the imaginary factors? Consider an observable A. Write
the corresponding expansion in the more explicit form

o> =Y ™ e(y, a)l [ie; > (8)

L}

where [, - and the mmapmary Tactors (e are not known, while the
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ensemble of real numbers {|c(,. ;)| } has been established experimentally.
Let us make an arbitrary choice of an ensemble of factors {e™}. The
expansion (8) is then defined. Thus it associates now to the symbol [},
a first mathematical representation where the numbers c(¥,, a;)=
le(Yro, a;)| €™ accept—consistently with the mutual orthogonality of the
eigenvectors of A—-the definition c(/,, a;) = {u, | Yo >. This representation,
by construction, is consistent with the experimental data |c(¥g, )| =
V/Tt(l;:lo, a;) concerning the observable A. Furthermore, it permits one now
to determine consistently the imaginary factors {e’*'} corresponding to
any other observable B that does not commute with A. Indeed, the expan-
sion for an arbitrary observable B, [B, A]#0, can be written as

o)=Y e® |e(Wo, bi)l |0 (9)
k

where
(o, be)=e®® |c(q, bi)l

By the standard rules of the quantum mechanical calculus, we have then,
for each fixed k, '

<Uk ! 'jjU> = C(d’{): bk) = el"ff““] IC(!)!}D: hﬁ.)" e Z T!.-;‘(-As B] C(w(}: a_,l')e f= !? 25---
} (10)

where the 1,;(A, B)= (vl |u;). k=1, 2,.., j=1, 2,.., are the coefficients of
transformation from the basis of eigenvectors of A to that of B. Thus, for
each fixed k (any one), the quantum theory of transformations yields a
separate condition

" = (o | o) f|cwa, be)l = [Z Ty (A B) e, aj}} f le(Wo, bil,

J
k=12 i (11)

that determines the complex factor e corresponding to that k, con-

sistently with the previous arbitrary choice of the ensemble of imaginary
factors {¢™/'} and with the experimental datum |c(y, b;)|. Thus we can
determine the ensemble of factors {¢*'} for the observable B in a way
that is consistent by construction with

all the experimental data {|c(yo. D) o nlfr, b)) concerning,
the observable B: all the experimental data [ etf, a] UTAR
I
concerning the observable A
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— and the initial arbitrary choice made in (1) for the factors {e™/'}).
Since this is achieved by the use of the conditions c(q, by) =
Z_!. r,‘:j{A,B}c{l,bU,aj). k=1,2,., imposed by the quantum theory of
transformations, what is called in this context the interference of
probabilities, [c(¥, by)l> =1, 14,(A, B) c(¥q, a))I?, is ensured. This brings
into evidence that:

The information contained in the quantum mechanical representation of
a state vector |Yo> does not exceed the constraints stemming from the
observable data brought forth by measurements (the real factors |c(y,, a;)|

from the expansion coefficients c(\o, a,) =™ |c(yo, a;)|), on the one hand,

and on the other hand from the conditions imposed by the quantum mechani-
cal theory of transformations (the imaginary factors e™”'}y which determine
the “interferences of probabilities connected with the passage from the basis
of an observable A, to that of an observable B, [B, A]#0."

Any mathematical representation associated to the initial label |y, ) thal
satisfies the two mentioned constraints is as good as any other one. These
constraints correspond to a whole family of convenient state vectors [if, )
(state functions ;) of which a member can be found in the way indicated
above.

Now, once the process of construction of a mathematical representi-
tion, by a state vector, of the designatum of the a priori introduced symbol
[ro> is closed, from that stage on, it can be admitted by induction thal
each time that the same operation P(i,) of state preparation will be per-
formed, its result will admit mathematical representation by the same statce
vector |y, > already constructed.

We conclude that any physical operation that can be performed on
microsystem and is specifiable by a definite set of instructions permitting,
one to reiterate this same operation an arbitrary number of times, produces
a state of the microsystem that can be represented mathematically, and
thus can be studied inside the quantum theory. (This corresponds (o what
is called a “pure” state. Obviously, the meta-case of what is called o
“mixture” can be treated in a similar way.)

The quantum theory involves the possibility of a sort of self-organizinyg
descriptional dynamics that starts inside pure lactuality, with a-concepitual,
strictly operational (instructional) definitions (determinations) of the studicd
states, involving no conceptualized  qualifications whateoer. Mathematical
descriptions and  predictional  qualifications  all contextual can - he
associated retroactively o these instructional definitions,

This s probably one ol the most original and important coneeptual
mnovicbons introduced tomphicotly ) by the quantum theory:
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It marks the extreme limit of operationalism.

Quantum mechanics, only implicitly but quite essentially and for the first
time in the history of thought, incorporates this limit into a formalization.

But when, in particular, an operation of preparation is defined by a
measurement evolution, this innovation remains nonutilized and thus
hidden: While in the history of a state of which the operation of preparation
is not tied with some measurement evolution there necessarily exists an
initial stage when this state was devoid of a known mathematical represen-
tation, when, at most, it was only a priori labeled by a symbol, in the
particular case of the states prepared by a measurement evolution such an
initial stage is lacking. The state vector is known in advance to be a definite
normed eigendifferential that approximates arbitrarily well a corresponding
definite eigenvector. This entails that:

A state prepared by a measurement evolution emerges endowed with
certain predecided (thus known) observational qualifications.

For instance, if it is known that the result of the preparation of a pure state
can be represented by some given eigenvector |u; > of a dynamical observ-
able A, then, ipso facto, it is also known that successive (nondemolishing,
etc.) A-measurements operated on this state would produce reiterated
registrations of the corresponding eigenvalue a; of A, which is a predeter-
mined observational qualification of the prepared state. So the fact that in
general an operation of state preparation can be freed of any dependence
on predetermined qualifications remains inapparent.

It might seem that this possibility is irrelevant. But in fact it con-
stitutes a loss of seminal potentialities of description: We have shown in
other works'*#-?) that it is very fertile to introduce independent represen-
tations for the operation by which is produced the object of a description,
and the operation by which this object is examined and qualified.

It is strikingly paradoxical that precisely the Copenhagen school, the
champion of operationalism, has introduced a definition of the state prepa-
rations that—inasmuch as it is not transgressed by some generalization—
hides the remarkable fact that the quantum theory permits one to reach
and to represent explicitly the extreme limit of operationalism. The reason
that motivated this definition will be interesting to identify. This will be
done in Secs.4 and 5. As for now, let us examine just below how the
distinction—or not—between preparations and measurements, is related
with the distinction—or not—between superpositions ol state vectors and
spectral decompositions of a state vector.

3.3.2. Superpositions of Several States Versus Specteal Decompositions
of One State. The feeble muatual individualization ol state preparations
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and measurements, tied with a fluctuating and feeble distinction between
state vector of a microsystem and eigenvector of an observable, entails an
insufficient distinction also between the principle of superposition (dis-
cussed mainly by Dirac) and Born’s principle of spectral decomposition
[the expansion postulate). Indeed, though these two principles have been
introduced independently of one another, the spectral decompositions of a
state vector on the basis of eigenvectors determined by an observable A are
quite currently designated as “superpositions of eigenstates of A.” The two

concepts tend to merge into one another inside the moulds of a relaxed
language. However:

A ,vpf?c{raf decomposition | > = 2.;¢(y, a) Ju,> possesses the following
characteristics.

— It is a representation that is relative, by definition, to some
observable A.

— Thc expansion  coefficients (i, a;) are necessarily complex
numbers (if they were not, the “interference of probabilities™ via transfor-

mation Fo another representation, an essential feature of the formalism,
would disappear).

=~ They are in general time-dependent in the Schrédinger representa-
tion.

- ’Fl}e su.mmed eigenvectors [u,> of A, in general an infinity, even a
continuous infinity, are all involved, by definition.

— They are independent of time.

o They are in general nor normed, and furthermore not nor-
malizable strico sensu.

— They are mutually ortogonal by definition, {u, | u;» =0,Y(k #j).

— Concerning “interference of probabilities”:

* In consequence of the mutual orthogonality of the summed terms,
the scalar products {u; |y with individual eigenvectors fu,> yield one-

term results so that for the individual probabilities 7(y, a;) we have the
one-term expressions '

(W, @) =|<u; [ )% = [y, a;)|? (7)
which shows (he absence of Vinterference of the probabilities” inside the

representation with respect fo the one observable A itself to which the
considered expansion 1orelarine ‘
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*  While by passage to another basis correspondil}g to another
observable B # A that does not commute with A, an “interference of
probabilities” does appear:

2

(W, bx) = c(Wo, bi)1* = |3 145(A, B) c(¥o, a))

=Z |Tkj(A: B}!:2 |C(wﬂ’ a_}'}!z

+ [interference terms involving all the pairs of products

7. (A, B) c(o, a;). (A, B) el a,)]

This is an abstract sort of interference which is relative to a pair of noncom-
muting observables (A, B) and which, though it entails certain gonsequcnc&i
(as well as many false interpretations, for instance in Bohm!
pp. 384-386), is devoid of a directly observable counterpart: The square
roots ¢(iq, a;) of all the values of the probabilities 7(i/, a;) of the el.emen—
tary events a, emerging when a measurement of the observable A is per-
formed on a state with state vector [ > “interfere” abstractly, numerically,
in the value of each probability (i, b, ) of an elementary event b, that might
emerge if a measurement of the other observable B that does not commute
with A were performed on that same state. In what follows this sort of
abstract interference by transformation from a representation A to another
representation B that never coexists with A, will be called “interference
relative to incompatible observables.”

On the contrary, a superposition of  states |\ . > =
AglW >+ 4, |y >+ 4. > +... possesses the following as if opposed
characteristics.

— It is a representation not tied with some particular observable.

—  The coefficients of linear combination 7., %,, +,... can relevantly be
chosen to be real numbers. Nothing in the formalism interdicts that.

— They are time-independent.

— It is permitted to superpose an arbitrary number—usually a small
number—of state vectors [, >, [, ...

— They are in general time-dependent in the Schrodinger representa-

tion.
— They are ahvays normed.
In general thev are mot nudually orthogonal  (However, when
inparticular  they are  orthogonal, the sealie products e i,
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Yyl > ..acquire  one-term expressions Y Y. > = A,
{¥slWabe. ) =44, etc., analogously to what happens in the case of a spec-
tral decomposition for the products {u;|y >. But notice that in this case, in
contradistinction to the products up |y ) =c(o, a;)=/n(y, a;), the
values of the “corresponding” products Wil ape >=A44, k=a, b, ¢,... do

not possess a probabilistic significance).
— Concerning “interference of probabilities™:

*  The scalar products {u; | W g, > with individual eigenvectors lu, >
from the basis of an observable A do not have a one-term expression; they
have a multi-term expression CUp (W ape..? =24 2l 1¥1 >, k=a, b, c,.... So
when the square modulus is calculated in order to estimate the correspond-
ing probability (. ,a,), an “interference of probabilities” appears no
matter whether yes or not the superposed terms |y, ), Wy, . >.. are
orthogonal (insofar as these terms are not themselves elements [u; > from
the basis of A, which can happen either in the case of a discrete spectrum,
or approximately). For instance, for a superposition state vector with only
two terms, the clementary predictional probabilities concerning the clemen-
tary outcomes g, for an observable A acquire the well-known “interference
form™

n{wabaaj)zl<uj|!r[,ub>|2:|)“u<uj|‘|bu>+;‘b<uj[wb>|3
‘J"alz |<Hj F ';‘.r.r)'2 e I/:b : <“_j Ii l1ilJ.F;|>|2_!" 2 Re{(’]"g;](;'b)*
x(“j'd"u)‘(”f!'ﬁ’b)*}] (12)

This is a sort of interference of probabilities where the quantunt mechanical
theory of transformation from the basis of one observable to the basis of
another observable is not involved, an interference that emerges “directly”
with respect to the summed state vectors, for any ene observable. So we shall
call it “interference relative to the superposed state vectors,” and we shall
distinguish it radically from the interference relative to incompatible
observables.

*  When one considers, for a superposition state vector, the

interference relative to the superposed state vectors that concerns the
position observable A =X, then—if the spatial supports of the superposed
state vectors are not disjoint—the corresponding form of the type (12)

(W ans N1 [0 X)) WD = 2,480 — ;) [, + 2,{8(x — X;) [,
[l WO 1A W)

b EREANMAN* (3 )ty )* ] (12
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is associated with the so amply discussed interference patterns in the physi-
cal space, directly observable on the domains where the spatial supports of
the summed state vectors overlap. In this sense the interference relative to
the superposed state vectors, in contradistinction to the interference relative
to incompatible observables, is not an abstract interference. The possibility
of such observable interference patterns disappears only if the spatial
supports of the superposed state vectors are all mutually disjoint, in which
case (12') acquires the degenerate noninterferent (but still multi-term) form

W ap %) = 12al > W a(X)17 + 1462 W(x)1? (127)

The mutual specificities emphasized above do not in the least manifest
an identity between spectral decompositions of one state vector and super-
positions of several state vectors. Quite the contrary, they manifest a sort
of opposition. In particular, they reveal a splitting of the central concept of
interference of probabilities.

Now, where do the observable effects tied with superposition state
vectors stem from? In what follows we show that they are essentially
related with a “multiple structure” of the operation of state preparation
that produces the state corresponding to the considered superposition state
vector.

Consider for simplicity a two-term superposition state vector

Wan) = 4o lWad + 25 W6 (S)

tied with a state preparation P(y,). If the state [{/,) of S is considered
separately, it stems from some operation of state preparation P(y,). If the
state |y,) of S is considered separately, it stems from some operation of
state preparation P(y,). If now the superposition state vector [ > Of S is
considered, it stems from some operation of state preparation P(y ), again
only “one” operation of state preparation since it produces the “one” pure
state |, that entails its own specific quantum mechanical predictions.
However, the operation of state preparation P(y,;) somehow is conceived
to “depend” on the two other operations P(y/,) and P(y,) that are tied
with the two state vectors |, > and |y, ) that would have been produced
by these operations, respectively, if they would have been realiged
separately. Tmplicitly but quite essentially, these other two preparation
operations are supposed to be

— mutually distinguishable

— realizable separately

combinable so as to constitute fogether “one”™ other apertion,
distinet from both Py ,) and Paf,) and realizable anone provious il

Spacetime Quantum Probabilities 1417

state of the studied system, associated with an initial state vector |y, of
that system.

So—quite systematically—in the case of a superposition of state
vectors we can write symbolically

P(W.,)=f(P(¥,), P(y,))  (f: some function)

In its last essence the principle of superposition is a statement, not
directly about state vectors, but, more fundamentally, about a—past—
operation of state preparation.

But these two different operations of state preparation P(y,) and P(y,)
have not been realized separately. They have been realized only “together,”
“inside” the global procedure P(yr,,). So the states represented by the
corresponding state vectors |,> and [y, > also, which could have been
produced separately via the separate realizations of the operations P(y,)
and P(y,)—which entails that they are normed—have not been realized
individually via P(y,,). They are only conceived of separately, in relation
with the one state vector |, > corresponding to the one realized global
operation of state preparation P(y,,) (realized either by the observer or by
some “natural” substitute of the observer, as in the case ol atomic states
of an clectron). They are conceived of and explicitly represented in the
mathematical expression (S) of |, > where they play the role of elements
of reference in the calculation of any individual probability n(y,, a;): as
can be read on the relation (12), n(y,,, a;) is a function of n(y,, a;) and
(Y4, ;). In particular, when one considers the position observable A =X
and the corresponding presence probabilities, this reference concerns
patterns of impacts observable in the physical space. The algorithm (12)
applied to the calculation of an individual presence probability 7(y . x;)
as a function of the individual probabilities n(y,, x;) and n(y,, x;) permits,
via (12'), a quantirative comparison between

— the observable pattern of position registrations corresponding to
the realized state represented by the descriptor |y, >

— the patterns that would be produced by each one of the states
represented by the descriptors |y, >, [, > if these states acted (or effectively
do act) separately on the device for the registration of eigenvalues of the
position observable.

What is designated by the term “interference of probabilities” as applied to
ohservable paiterns  of  position  registration, is precisely the difference
brought forth by this comparison between the two patterns corresponding
separately to [ifecand [ifr, and the pattern corresponding to i, > One
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sees how such patterns are essentially tied with the “multiple” structure
Py ) =1(P(,), P(by)), (f:some function) of the involved operation of
state preparation.

And notice that, remarkably, overlapping of the spatial supports of the
superposed state vectors at least somewhere in spacetime (if time is left to
increase indefinitely) is somehow related with a “multiple” structure
P( )= f(P(y,), P(,)) (f: some function) of the operation of state
preparation. Here comes somehow into play (HOW?) the fact that in a
superposition of states the combined state vectors are time-dependent,
while the coefficients of linear combination are not. In this context,
L. Cohen’s criterion''®’ for identifying the “decompositions” of a state vector
into “meaningful parts” by estimations of standard deviations of “currents”
(p. 1470) might appear to be very relevant inside the deepened development
of the de Broglie-Bohm model that is introduced in the last section of this
work. (However—imperatively—one should speak then of superpositions
of independently preparable state vectors, not of “decompositions in
parts.”)

We summarize in general terms.

In a superposition representation (S), the unique physically realized
operation of state preparation is that one symbolized by the notation P({ ,;, ),
of which the unique result is that one symbolized by the global notation
W >. This—past—operation of state preparation P\, ) somehow
involved, “‘contained,” two or more other operations of state preparation,
P(y,), P(Y,),.... mutually “distinct” and which can be realized separately.
The state vectors Y, >, |, ..., corresponding to the states that would have
emerged if P(y,), P(Y),... would have been accomplished separately, are
explicitly specified inside the formal expression of the state vector W, >
corresponding to the unique physically realized state produced by P(\r,, ).
There they play the role of elements of reference incorporated into the math-
ematical representation: It is with respect to them that there emerges a
concept of interference of probabilities that is tied with patterns of position
registrations directly observable in the physical space.

This is in strong contrast with what is involved by the expression (D)
of a spectral decomposition. There the representation does not designate
observable effects of a particular type of structure of the past operation of
state preparation of the studied state vector. What is represented in a spec-
tral decomposition of a studied state vector |y > is the obscrvable effects of

a furure operation of measurement of an observable A perlormed on i S
(Fig. 2). The representation is given in terms ol the proecions ol the
considered state vector i >, onto all  the absteact cipenvectors |u,

Vic J, of the considered observable A Such an cripenvecton [n nccording,
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to its very definition by the equation for eigenvectors and eigenvalues of
A-—is not in general a descriptor tied with a state producible by some
specific operation of state preparation. It is only part of the mathematical
representation of a framework for the qualification of quantum mechanical
states, a framework introduced by the observable A. Namely, the eigen-
v_cctors lu;7, VjeJ, define a family, specific of this observable A, of “direc-
tions of qualification,” of “semantic directions” (unidimensional, in the
absence of degeneracy) cach of which is associated with an observable
eigenvalue of A. In general these semantic directions are only tangent to
the Hilbert space that contains the state vectors [y >; they are exterior to
this space. They are images of elements endowed with a primary definition
only inside the dual of the Hilbert space of the system. By a function
(involved in a linear functional on the space of the states) the eigenvector
lu;» corresponding to an eigenvalue a; of an observable A gqualifies some
feature (which one exactly?) of the same global factual situation that is also
qualified by the eigenvalue a;. As to the eigenvalue a, itself, it qualifies the
individual observable outcomes V,, with _f;[VJ,):ﬁr;-, of the elementary
quantum mechanical chain experiments which, in their turn, via the corre-
sponding probabilistic metaqualifications (1), a;), qualify globally what is
called a “quantum mechanical state” and is represented by a state vector
[ >. We sum up:

A spectral decomposition |y =Y ;W a)) lu, > is referred to a future
operation of measurement, upon the studied ~already prepared—state vector
W >, of an observable A. Each eigenvector |u;» of A is a descriptor of a
particular qualification from a whole framework for qualification introduced
by A, a framework that is defined on the whole space of the state vectors.

Though a descriptor |u; ) is utilized for calculating the probability of an
outcome f,(V;) = a; for any given state vector, there is nothing probabilistic
in this descriptor itsell. The descriptor {u;> is tied with one eigenvalue a; (in
a nondegenerate situation), so it points toward an essentially individual
predication. There is no reason whatever to require normability for the math-
ematical descriptor |u,» (like for the state vectors W > which, by definition,
generate probability measures). Quite the contrary, this would simply be
grossly inadequate from a semantic point of view.

Correlatively, the spectral decomposition with respect to one observable
A—by itself—entails no interference of probabilities, neither observable nor
abstract. An interference of probabilities tied with spectral decompositions
arises only by transformation from the basis of one observable A to the basis
of another observable B that does not commute with A.

Sinee the cipenvectors e deseriptors with - individual meaning, the
“problem™ ol normalizntnon of the cipenvectors of obscervables  with
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continuous spectrum is a false problem. Thus the “resolution” by the con-
struction of state vectors yielding approximated normed representations of
cigenvectors is a resolution without a corresponding problem—just
noxious mathematically generated semantic fog that masks under a veil of
superficial uniformity a radical solution of continuity, in the space of the
concepts, between eigenvectors and state vectors. Even the standard theory
of probabilities rejects (implicitly of course) the confusion between eigen-
vectors and state vectors. This, for instance, is illustrated by very interesting
remarks by L.Cohen [Ref. 13, pp. 991-992, Egs. (54)-(59)]. In order to
understand fully the veritable problem involved in the quantum mechanical
description of the measurements, in order to formulate it in more analyzed
terms and to form a veritable answer to it, the conceptual difference
between the designata of the eigenvectors and those of state vectors has to
be recognized as essential, to be specified, and to be set at the bottom.

In short, the code is in essence this for distinguishing between the
factual conterparts of, on the one hand, the superposition writings and, on
the other hand, the spectral decompositions:

—— A linear combination of an arbitrary number of (in general) time-
depending and mutually nonorthogonal “state” vectors of a system S, all
normed, that is not relative to some observable and that can, in particular,
be relevantly written with real coefficients, can be regarded as: the formal
expression of the result of one operation of state preparation somehow
“depending” on (referrable to) other (two or more) operations of state
preparation, individually realizable but not individually realized, and which
are such that if they were individually realized, would produce the states
corresponding to the linearly combined state vectors.

— A linear expansion of one normed “state’ vector, on the basis of
all the mutually orthogonal and (in general) infinitely numerous and non-
normalizable “‘eigen” vectors of an observable A, with complex and time-
dependent expansion coefficients, can be considered as: a formal expression
of the qualification of the physical state represented by that state vector,
inside the framework for qualification of any quantum mechanical state
introduced by the observable A; namely, a probabilistic qualification of the
state by the probability densities [c(v, a,))?=|<u; | ¥ %|? of the observable
outcomes f,(V;)=a, of the quantum mechanical elementary chain
experiments performed with that state and with the mcasurement evolu-
tions M, for A.

In particular, it can happen that the spectrum ol the considered
observable A be discrete (Hamiltonian ol o bounded state or o kinetic
momentum). This entails then an identification ol ci hocipenvector, with a
state veetor of a preparable state (which involves thenalaa defimite fimite
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norm for the eigenvectors, as well as mutual orthogonality, and inde-
pendence of time for the ensemble (a discrete infinity) of these “eigenstate
vectors™). .Nevertheless, even in these particular situations which introduce
fqr each eigenstatevector a cumulation of two distinct roles, the conceptual
quCTEHCC still quite fully subsists between the designatum of a superposi-
tion of s§:veral eigenstate vectors on the one hand (way of preparing the
superposition state vector), and on the other hand the designatum of a
decomposition of a state vector along the whole infinity of eigenstate
vectors from the basis of eigenvectors of the considered observable (way of
qualifying that state vector). And the existence of this difference continues
to be even formally disclosed by the subsistence of the possible relevance,
or not, of real coefficients.

'So the code explicated above always avoids confusion between super-
pgs:twns and spectral decompositions. (The removal of this confusion
might clarify the significance of conceptually rather obscure perturbation
methods used for the calculation of the spectrum of energy of quantified
:?ygtems, etc.) But resort to the code ceases to be necessary as soon as one
is in possession of the concept of a probability tree. Again, by the simple
contemplation of the figure that represents a tree, it becomes obvious that
the superpositions concern the primary operation P(i,) of generation of an
object for subsequent examinations, while the decompositions concern the
secondary operations M, of qualification of this object (Figs.2 and 3A
(p. 1440)). Again it jumps at one’s eyes that these two concepts concern
essentially different phases of the genesis of the quantum mechanical events
placed at two different temporal levels of a tree, imbedded in diﬂ"cren;
spacetime domains and possessing essentially different cognitive roles.

3.33. The Germ of a Calculus with Whole Probability Trees
(Probabilistic Meta-Metadependence). The quasi-confounded treatment of
superpositions and of spectral decompositions hides the important fact
that, in a certain sense, a superposition of states—but not also a spectral
decomposition—involves a germ of a calculus with several probability trees,
wiobally considered. ‘

‘Consider a state vector [y ) wich is instructionally defined by the
specification of only one preparation procedure P(i7). Then the probability
measures from the observational spaces (3') of the corresponding probabil-
ity tree are completely specified by reference to the only one state vector
[ > tied with the unique operation of state preparation P(y) (for simplicity
we suppose measurements directly on the prepared state | ), ie., we
consider the partculan case © 4, O, [ > =, >). For example, in (3'),
the measure ntfea) we caldenlable on the basis of the postulate (2),
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n(y, a;) = |{u; [ >|?, by making use of exclusively the state vector [ ). But
the situation changes if we consider a superposition state vector

w!rrb> = ‘;‘“n Iiu’lu> + j“b l.q'}b>

(as, for example, in the case of a Young i.nlu_’::rfcrence). Thcn—phym-
cally—the corresponding preparation P(y/,,) still introduces only one state
[f,,>, so only one probability tree. Nevertheless, as has alreardy beep
stressed, the probability measures from the observable spaces (3') of this
unique tree are now calculated by reference to,' also, tlhe two st:?.?e vect0r§
ly,> and |y, from the mathematical expression of |y, >. This happens
algorithmically, via the combination of

— the additive quantum mechanical representation of the state /Y
by a superposition writing

— the spectral decomposition writings.

—the probability postulate (2).

Indeed, when accordingly to (S) and (2) the measure (W 4, f") will havc;
to be calculated by the use of the relation (12): m( o, @) = |Au|7 [ {u; | '.'b“>i
14,02 Cuy |12+ 2 Re{ (4,)(4p)* <u; lj;:,)z(u_,. | u';,,)f}} (or in ?qrtlculai
(12) Wy %) = lial® WP + 142 W)+ 2Re{(1a)(4s)
Yo (x,) Wulx;)*}]), three probability trees a_re—-—globally— brought into play,
namely: The unique tree 7 (/) physically generated by thv; unique
physically realized preparation P(¥,,), and furthermore the two trees
T (Y,) and T (Y,) corresponding to the two p;eparanons P(u{’{u} and _P(u,bb]
on which the preparation P(¥,) =f(P{wu}, P{lk,,)} “depends —.—canSJdered
separately —which have not been realized mdm_dual_ly, bul being reﬂpcted
in the writings by the specification of their possible individual rqsults 1/
and |¢,), act there as a conceptual reference. lt.l fact what 1s I?'rpught
into play is a structure of three muufa..-’fy consistent rules of ‘formal
composition,”” namely the rule of composition of:

_ The reference preparation operation P(y,) with the reference
preparation operation Py,

Some definition of the function f(P(ir.), P(Y4)) = P(y ) and of its. physical
counterpart are supposed 10 “exist”’: this supposition in fgvr r'rirr.\:rftme.s the
fundamental principle of superposition. However, this basic definition is not
-speﬂed out inside quantum mechanics as it now stends.

The reference state veetor [, > corresponding (o the preparation
operation P(yr,), with the relerence sl;lllv veeton l#l,h;, correspondimg, to the
preparation operation Plj,) (the additive rule £50)
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— The corresponding reference observable probability measure
[Aa<u; ) Y,>1% with the reference observable probability measure
[4p<u; | ¥, >|? (the quantum mechanical algorithm (2 + S)=(12)).

Globally, what comes here in implicitly is a complex algorithm of
formal composition of the two only conceived reference-probability trees
T (Y,) and 7 (y,), such as to yield

by a sort of “probabilistic dependence’’ defined between entire trees

precisely the result postulated by the relation (2) for the probability
measures from the unique tree 7 (y,,) which is physically realized. Such an
algorithm amounts to endowing the mathematical representation assigned to
each level of the unique physically realized tree (operation of preparation,
prepared state vector, observable probability space) with an incorporated
reference to the corresponding level of the two other, only conceived trees.

Obviously, such a representation, endowed with such a reference,
transgresses essentially the concept of one probability tree; it involves
certain meta-qualifications with respect to the qualifications which can be
expressed inside the nonreferred representation of one single tree. We are
here in the presence of a probabilistic meta-metadependence with respect to
the present standard concept of probabilistic dependence (since the quan-
tum theory of transformations involves already-—inside a unique tree—a
sort of probabilistic metadependence with respect to the probabilistic
dependence in the sense of the theory of probabilities as it now stands).
Only if this probabilistic meta-metadependence, globally considered, is
taken into consideration also, does it become possible to try to encompass
the whole significance of the quantum mechanical principle of super-
position.

Thus, inside quantum mechanics as it now stands, the germ of certain
algorithms can be discerned corresponding to an implicit calculus with
cntire probability trees. This happens cach time that superposition states
are represented. (This happens also each time that successive measurements
are represented. But then the conceptual insertion is different: Instead of
the principle of superposition, the projection postulate acts at the bottom,
identifying the operations of preparation in the general sense, with the
particular category of preparations by measurement evolutions. This distorts
and flattens the conceptual space involved.) However, with the implicit and
incomplete quantum mechanical calculus with entire probability trees we
penetrate into this confused rontier zone -which always does exist—where
the representations already claborated by a theory plunge into the still
unconceptuahzed Hhe bavn L ix that the operations of state preparation
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are devoid of mathematical representation. This is a lacuna of which the
consequences mark the intelligibility of the whole orthodox formalism.

4. COMPLEMENTS TO THE ORTHODOX FORMALISM:
OPERATORS OF STATE PREPARATION, MEASUREMENT
PROPAGATOR; A THEOREM RELATING PREPARATIONS AND
MEASUREMENTS

The explicit and integrated perception of the probabilistic organization
of quantum mechanics and of the spacetime aspects involved has permitted
us in Sec. 3 to discern, inside quantum mechanics, probabilistic features not
yet described in the standard theory of probabilities: probabilistic meta-
dependences and meta-metadependences. These point toward a possible
extension of the abstract theory of probabilities. But in connection with the
mentioned features also certain insufficiencies of the quantum theory itself
have been perceived. In what follows, in erder to diminish these insufficien-
cies, we produce three constructive prolongations of the orthodox
formalism,

4.1. Operators of State Preparation and Their Calculus

What operators and what calculus with these can be defined in order
to represent mathematically the physical operations of state preparation in
a way that is consistent with the orthodox formalism as it now stands?

Suppose that G(i) (G: generator) is an operator that represents math-
ematically the operation of state preparation P(y). For consistency with
the linear formalism of quantum mechanics, let us require G(i¥) to be a
linear operator. Then, to represent mathematically the preparation of the
states with state vectors [W, >, |, 0, W =4, W, > + 4, [, >, we have to
write, respectively, for any choice of some initial state vector |y, ):

GWI WS =W  GW) WD =1Ws>  Glbw) W=D

(read: G(y,) acting on some—any—previously existing state with state
vector |,> (known or nor), generates out of it the state with state vector

[, >, etc.). The unknown functional relation */™ from (he representation
Py )= 1(PGF,), P(ifr,,)) concerning the three factual operations denoted
P(frp). PO, P, involved in the preparation ol o superposition state
veetor [y, > = A, > 12, [y o0 will somehow tmelte o o formal
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relation “g,” G‘(f,ér,,,,}=g[(}(qba], G(¥,)]. To find the translation we write
down the conditions, in agreement with the linearity required for the G(y):

G('J[Jlah) N’:) = !l!lab> = ':I'a ]Jla> + ’J“b W’/b) = /"aG(wa) .luljf> + ’J“bG(wb] |d/r>
=[4.GW.) +4,G(0,)] [y, (13)

The function g that connects the operators GWa) GOJ,), G(Y,) is the same
linear combination that connects the state vectors s> W, >, WD, So, in
general terms,

g[G{d]u)? G(wh}a G(l)b(-)r"] = G(ﬁbam-,,.): Z "]“kG(lpkja k= a, bs Cyn (]4)
k

Fur'thef'morc, since for the well-known quantum mechanical operator of
pch.cFlon onto |y >, P,, we have P> =Dy | v,>, ¥y, while by
definition G(y/) [¥,> = | >, we can write

GW)=(1/<y ¢y P, (15)
which we shall call a “normed projector” onto |y >:

A “n.ormed " projector P, yields an adequate representation for the
concept of an “operator G(y) of state preparation” such as required by (14 ).

From (14) and (15) it follows that for a superposition state vector i

: abe... >
We can write

G('}‘rjahc...} = (1!'/<¢ab( | '1{’1)) P\bub(-,.. i Z (j'k.'"r<!_bk | '4{’;>] Pu‘;k? k =4a, ba Cyune
k
(16)

The operator of preparation of a superposition state vector can be
represented mathematically by a linear combination of normed projectors.

This includes automatically the particular case of preparation by a
measurement evolution M, posited by the orthodox projection postulate:
In that case the state preparation  operator becomes indeed
(1/<u; | ;> P, where lu;»> is the eigenvector of the observable A corre-
sponding to the registered eigenvalue a;. But it has to be clearly realized
that in the formalism as it now stands the projectors P, are not utilized
\?ith the fundamental role of general formal representatives of the opera-
tions of state preparation. The projectors P, are utilized most currently in
the algorithms  connected with  measurement operations [density (or
statistical) operators |,

The definttion (1) | (163 has interesting implications concerning the
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coherence between the semantics to be assigned to the formal feature of
commutativity of two linear operators and the nonformalized qualification
of “compatibility” drawn from the current language:

For consistency with the linear formalism of quantum mechanics we
have required linearity for the operators of state preparation. This entailed
the necessity, in (16), of a linear superposition of distinct, thus noncommut-
ing, normed projectors P, P,,... that will all act on one same initial state
vector |, >. While two commuting projectors—which reduce in fact to one
single projector—cannot generate a superposition state vector because they
(it) cannot represent the required distinct actions on one same initial state
vector [y;>. In this sense:

For the mathematical representation of the process of generation of a
superposition state, distinct and noncommuting operators of state preparation
are “‘compatible” operators.

This appears “opposite” to what happens for the mathematical
representation of the operations of measurement of dynamical quantities:
two dynamical operators, as is well known, are considered to be
“compatible” when they commute, while if they do not commute they are
considered to be “incompatible.”

Now, we have emphasized that in the case of the representation of
measurement operations, the factual counterpart of the “compatibility” of
two—commuting—dynamical operators A and B consists of the possibility
of individual measurement evolutions M ,, for A and B possessing one com-
mon spacetime support. This is what entails the possibility, from each (one)
registered “needle position” F; that has been the unique factual observable
outcome of one given reiteration of a measurement evolution M ,;, to
calculate a pair of two correlated eigenvalues a,= f,(V,), b, = fx(V;) (which
is verbally designated as the possibility of a “simultaneous” measurement of
the observables A and B). While if A and B do not commute, the individual
measurement evolutions M, for A and M, for B possess necessarily
distinct spacetime supports, which is designated by the assertion that
“simultaneous measurements for A and B are not possible” (the factual
substance of Bohr complementarity).

In short: When exclusively measurement operators are considered, the
two qualifications “commuting” and “compatible” apply to the same sub-
ensemble of operators, so that they tend to identily. But when also normed
projectors as representatives of operations ol stale preparation  are

considered, the domains ol application ol these two qualilicitions separale,
So a new language cmerges which concerns o more comples situation, We
shall now establish explicitly this new Einpuape Fake into account:

F i
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— the usage of language found ab i
_ ove and the correspondin
designata for the case of measurements, ’ :

_thc fa;t that two different projectors do not commute while two
commuting projectors identify,

o thf-: _fact that the different projectors involved in the preparation of
4 superposition state represent individual operations that are physically
different and, nevertheless, can all act on one same initial—individual—

factual situation corres i initi
sponding to one same initial quantum m i
state vector |y, >, 1 —

— systematic distinction between abstract descri i i
. scriptor an $ .
ot p d its physical
—— systematic distinction between

*  the individual level of description (where are placed the various

individual realizations of an operation of state preparation, or of one
measurement evolution, or of an elementary chain experiment)

* thu metalevel of probabilistic description (where is placed by
definition the quantum mechanical concept of state vector |y and
correlatively, t}_le concept of “one” (complete) quantum mechanicai
measurement involving a whole ensemble of elementary chain
cxperiments,

and, finally,

requirement of one same stable language valid no matter whether
measurements or state preparations are described.

il “compatibility” or “noncompatibility” of two linear operators
(dynamical or not); respectively, the relevance or not of the action of both
these operators on one individual realization of a state of the studied system
corresponding to one given quantum mechanical state vector.

1 - commutativity” or “noncommutativity” of two linear operators
(dynamical or not): respectively, the identity or the disjoint character of the

spacetime supports of the individual physical operations represented b
these two operators. ’

. Multiplicative composition of the action of two (or more) com-
InlllIng.{f.l'HHHH'r'r.ff operalors upon one given state vector | >: mathematical
expression ol the factual identity of two (or more) processes of qualification
of iy one individual realization of a state of a system corresponding to

[t 0 Vi one commaon sort ol mdividual measurement cvolutions M
L B
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realizable on one same spacetime support, but of which the—one,
common—/factual observable outcome V;, once it has emerged, can then be
conceptually worked out in various ways, a,=fa(V;), b= fu(V;), etc.
(which justifies the above somewhat misleading wording “two or more”
processes of qualification).

— Additive composition of two (or more )—necessarily-——noncom-
muting operators of state preparation (normed projectors) upon one given
initial state vector |y, >: mathematical expression of the generation, out of
any one (individual) realization of a factual state of the studied system tied
with the quantum mechanical state vector [, of one realization of a new
factual state of the studied system tied with a new quantum mechanical
state vector |yo), via the action of two (or more) factually different
processes of “preparation” possessing disjoint spacetime supports, all these
processes being posited to end at a same moment, which is the initial
moment 1, of the newly prepared state vector o> = [Wl(to))-

With this dictionary, we can now say that:

In the case of the representation of an operation of state preparation
G(yabe...) = (1/<{¥ ae... | ¥i>) Pyase.. = T (/W [ i) Py k=a,b,c,..
that generates a superposition state Wb > =2k (A | W2, the distinct
noncommuting normed projectors 1/ gpe. | ¥i2) Pyk that are involved
correspond to compatible ph ysical actions of which nevertheless the spacetime

supports are disjoint.

So gquantum mechanics permits (could we even say that it requires?)
a certain coherent prolongation of its formalism and its language, where the
operations of state preparation (all of them, not only those consisting of
measurement evolutions M ;) are mathematically represented by operators
of state preparation G(y) that are normed projectors combined accord-
ingly to a specific calculus entailed by the fact that the space of the normed
kets |y > is a vector space. This calculus with operators of state preparation
is distinct from the calculus with dynamical operators, which represent
measurements and are tied with the principle of spectral decomposition.
This finally demonstrates that the formal structure of the quantum theory
by no means entails the orthodox flattening identifications between
preparations and measurements and between superpositions of several state
vectors and spectral decompositions of one state vector: 1t rejects them in
fact, if we go to the bottom.

The definition (15)--(16) of operators ol stife preparation elfaces the
lacuna in the rules of combination of fwo or e probability trees
reparded as wholes. So the implicit guantum pechanieal caleatos with

i
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whoble hphro.hability trees, expressing a new probabilistic concept of
probabilistic meta-meladcpendcnce‘ is now entirely explicated.
But the most important consequence is indicated below.

4.2. The Minimal Model Involved by the Principle of Superposition

In quantum mechanics as it now stands, the mathematical expression
of Fh?j prlpmpltﬂ of superposition is referred exclusively to the state vectors
This is misleading. Indeed—fundamentally—the principle of superpositiori
fa]ks a_bout operations of state preparation. And the definition (15)+(16)
](;Sp:?dutl'valelm to ta dfepened reformulation involving now explicitly these

ational roots also. i i 5 i i
L S prindgl:m permits progress concerning the physical

Consider a two-term superposition state vector | ,>=24,|,>+
Ay |q‘rb?. We have shown that in order to represent mat‘ilcmatigelllla the
operation of preparation of |, > we must make use of a normed proj)t;ctor
“/(’J”_ab | _‘}E’f» Pyas = (A/<¥al¥:>) Pyu+ Ap/ 1> Py, that is a linear
combination of two distinct normed projectors (11()|,b [;>)P,, and
(L[, | 9] P s, which act: on one inttial state vector |4,>-out.of which
t‘;l(ey generat§ Was>: [dal lal¥i0) Pyat (2ol s 10:0) Pyp 1 WD = Wran -

e havt.: also shown that this mathematical representation involves athe
assumption of “compatibility” of the physical processes described by the two
operators (1/{y,¥,>) Py, and (1/{¥, | ¥,>) Py, in a definite sense which
concerns the spacetime features of the mentioned processes. Now, in conse-
quence of thze conditions of norm, the two spatial domains A (| l; ty=A(a)
and A(|y,]°, )= A4(b), where |,> and |, ), respectively, yizld, presence

-probabilities that are not quasi-null, are finite with respect to any fixed defini-

tion of q.ugsi-nullity. And, since the current formulation of the principle of
superppsltion asserts that the state represented by |y, » can be creattl:)d for
any pair |, > and [y, >, we are free to imagine in paratécular that |y (x, 1)>
and |, (x, !]} are such that, at a given time ¢ (in the observer’s refe;cn’tial}
the Fwo spatlal domains A(a, t) and A4(b, t) are disjoint and thé (purel

.\"pattal} distance that separates them is very big, say, of the orger o);'
light-years. Nevertheless quantum mechanics still assume; as it is explicitl

expressed by the new writing [(4,/{¥, |y, >)P,, + [ﬁ.,,;"(i,bb] Y P ]?q’; ->-¥
[ >, that tl_lcrc does exist an initial state vector |y (x ir’)) Mr::; ;1'
the one considered “system,” such that the two pre;;ar;tion, proce;ses
I'U]'JITCHCI'IICLI by the two mathematical writings (1/{y, | ¥,;>)P,, and
(/e L, o Py e both take place “compatibly” onaéach indﬁiiddl?al

realization ol o etoal state corres i
lio A lactual sk esponding (o the state vector i, (x, ¢/
But this s a0 moded WAL
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The principle of superposition associates to the entity called “one” quan-
tum system, a model according to which an individual factual realization of a
state of this entity can be such that—whatever be other nonspecified qualifica-
tions of it—this state covers an arbitrarily big spatial domain, notwithstanding
that in some nonspecified sense a quantum system is conceived to be also

IE

“microscopic” (it is even often called “‘one microsystem™ ).

Horribile dictu, but the orthodox formulation, though it proclaims inter-
diction of any model, in fact is itself founded on a model. And this model, on
the one hand, violates the natural slopes of the connection between what we
would agree to call a microsystem and the designatum forced upon us by the
princile of superposition, and, on the other hand, is not achieved, not worked
out. In this sense it is a “minimal” model. Whether it is explicitly declared or
not, this minimal model is there, encapsulated into the principle of superposi-
tion. Camouflaged loosely inside the conceptual volume delimited by its non-
committal absence of full specification, this minimal model fluctuates there
implicitly, leading to confusion and perplexity. And it acts on our speaking
and on our thinking. It literally invades them in the form of problems and
paradoxes that haunt the quantum theory ever since it appeared.
“Schrodinger’s cat” or more abstractly “the reduction problem,” as well as
the “locality” problem, are only the most striking distillations and scandalous
amplifications of consequences of this hidden unfinished model. Only further
specifications could remove the ambiguities that emanate from this model,
and perhaps thereby also its queerness. In Sec. 5 of this work we shall sketch
out qualitatively such further specifications, while just beneath we continue
to stay inside the orthodox theory.

4.3. Measurement Propagator

We have brought forth a radical distinction between, on the one hand,
preparations and superpositions of several state vectors and, on the other
hand, measurements and spectral decompositions of one state vector. We
shall now try—confined inside the orthodox approach—to understand more
clearly how these two distinct pairs of concepts are related.

Bohm,"* de Broglie,'**) Margenau and Park'?’ (in their study of the
“time of flight” method for the measurement of the momentum observable),
as well as other authors, have already strongly and variously emphasized that

an evolution of the descriptor [(x, (). il it is “pood™ for producing
“measurement evolutions™ M of the first kind foran abservable A possesses
specific characteristics. Nevertheless, quantun mechamies as it now stands

does not introduce an explicit general defimtion ol the aperatonr of evolution
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H , to be tigd with the individual measurement evolutions M , corresponding
toa d)fnal_'mcal observable A. It only supposes implicitly that, given a “physi-
cally significant™ quantum mechanical observable A (as is well known, not
any quantum observable is measurable), such an operator H , can be f(;und

!"or A: Below we introduce a condition that ensures some of the characteristics
identified by other authors,

Condition C"HA. A quantum mechanical evolution operator /, can
be connected with the individual measurement evolutions M, of the first

]iincl corresponding to a quantum mechanical observable A only if it works
like an operator

LU/ Cnloxs t) [ p(x, 1)) ] P

xlx, ')
= Z Lle(, a))l e™ /< ®;(x, ') | Y(x, 1))] Py

qf preparation, out of the studied state vector l(x, 1), of the superposi-
fion state vector

lx(x, 1)) = Z le(h, @)l eV |Dy(x, 1')>, >t

where

= |®;(x, t")), for any j, is a normed eigendifferential corresponding
to an eigenvector [u,(x)) of 4

the coefficients of linear combination reproduce the real parts

le(¥, a))| of the expansion coefficients c(y, t, a;) from the spectral decom-

position [¥{x, £)) =2, ¢, ta)lu;(x)> of the studied state vector
|(,b(,.r, 1)) on the basis of eigenvectors lu;(x)) of 4, the factors ¢"*)/ being
anltrary (in particular, these factors can reproduce those from the
. 1, a)), or, alternatively, they can be all set equal to 1, thus introducing
a superposition with real coefficients).

— th_:: spatial domains 4,(y, '), where the presence probabilities
corresponding to the state vectors |@;(x, t')> are not practically zero,

bgcomc rpu_tual_ly disjoint up to an approximation that can be improved
without limitation by increasing ¢'.

Fhis Co\m‘iilinn ruquirc‘s .H" such that out of the studied state vector
(v 2) > it shall materialize approximately in the physical space, at times

'

("t the abstract - spectral decomposition: of I(x, 1)> on the basis of
crrenvectors ol A
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4.4. A Measurement Theorem

The condition CH ,, if it is realized, entails the following theorem.

Measurement Theorem MT. The event “registration foxr -W{.x{‘?fgi
an eigenvalue a; of A" can be represented k_)y the cvern‘t, Lwrt,gxit;a {10 e
|y(x, ")) of the presence inside the domam A,(z,‘t V] [xedly :
namely, in the following sense. The numerical equality

n(y, a,)=m(x€ A1 1)

where n(y, ;) and n(x€ A,(1, ")) are, respectively, tbc quanlum’Tec:hlgr;;
cal probabili{ies of the first and the second event specified above,l\lz rcaflzlhc
with an arbitrarily improvable accuracy for any measurement M, 0

first kind.

) ' iti state  vector |x(x, 1) > =
Proof. Consider the superposition stal¢ (x, ') =
Z-lc(:; a{) le™| @;(x, 1)), 1'>1, as defined in C.HA..‘AI any mdmdu(ta]i
spjacepo‘itiia + we have for |x(x, ")) a presence probability which (at mos
is reduced to only onc term

a(x, 7) = lxx, ) = le(@; a,)l e (x, 1")* =¥, a,)? |®,(x, ')

where the index ¢ designates, among all the disjo?nt spatial di?mal;ls}

. "), that one to which belongs the considered point x. Then the :‘o a
el i 3 ability inside the domain 4,(x, 1) 1S,
quantum mechanical presence probability 1ns ! (;) 18
from the expression of m(x, 1) and because of the norm 1 of the |&;(x, A

n(xed (1t))= Lq ly(x, 1)) dx = |, a,)’ l |®,(x, 1')|* dx= le(y, a, )l

which by the postulate (2) is also the quantum mcchanica_l prfsliabl;ﬁty\ji;tgz
izati i is i ly approximately
lization of the eigenvalue a,. This is true on natel vatlvan
z:illl;acy which accordingly (oq CH , can be 1mp_roved arbltranly‘ by C:n(,refu,
ing 1’ i, by improving the mutual disjunction of thc .spallal omalns
4 g{ ;")'a‘r’ld thus the mutual orthogonality of any t_wo distinct state ‘vcctor.‘:
Itir"J ‘[(\T '}y and [P, (x t')>). So, with an arbitrarily improvable accuracy, we
X >
have indeed

n(xed (X ') = le(y(t), aq}l,2=1r{|,’;[f). da,) '>1 *

This proof, trivial as it is, establishes a rru-.‘i_:li :;frfm-rr:;::il::::WT:;:;
the two fundamentally distinct U“I.mcl.ﬂﬁ ol H|¥l't‘||.|lf|l.l:tt;ll‘l1[ I”". I.\."L.I.:”
of superposition ol states. M_nrc. in fact. 1 n--.ll.nln ihes, .'t i w; "
quantum mechanical  predictional postulate (2 nbfr o, 1
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[Cu, [ >]*], an “explanation” deduced from the condition CH 4 and the par-
ticular acceptance of (2) concerning exclusively the position observable,
(Y, x) = [Y(x)|> And notice that the deduction is founded upon the distinc-

tion between spectral decompositions of a state vector and superpositions of
several state vectors.

Via the condition CH , and the theorem MT, the spectral decomposition
of the studied state vector (x, 1)) with respeci to the eigenvectors of a
measured observable A appears as an only abstract conceptual prefiguration
of the superposition state |y(x, t')> actually prepared in the physical space,

at later times t' > t, by the quantum mechanical operator H 5 of measurement
evolutions M .

By a rotation inside the Hilbert space of the system, the measurement
propagator H, brings asymptotically the conceptual spectral decomposition
with respect to the eigenkets of A, of the studied state vector |i(x, 7)), down
onto the physical space. The abstract “disjunction” represented by the spec-
tral decomposition [Y(x, 1)) =3, c(y, t, a;) |u;,(x)) distinguishes inside
[(x, t)) between the elements of a family of mutually exclusive “how’s”
represented by eigenvectors |u;», no matter where in spacetime, since
{ug | u;» =0 for j#k but the |u;)’s are time-independent and in general
distinct [u;>’s do not possess disjoint spatial supports. The measure-
ment propagator H , transposes this abstract disjunction into a “disjunction”
in the physical space, represented by the superposition state vector
x(x, 1)) =3, le(y, a;) || @;(x, ")), ' > ¢, that distinguishes between the
elements of a family of mutually exclusive “where’s,” the 4,(y, ¢'), while how
is what populates the disjoint spatial domains 4,(y, ¢') is devoid of pragmatic
significance: With respect to the pair of qualifications how-where the initial
situation and the final one are opposed.

Consider in particular the following degenerate situation. A =H,
where H is the operator of total energy of a microscopic bound state. The
spectrum of eigenvalues ;= E; of the considered observable H is discrete
and the corresponding eigenvectors identify with a discrete family of
normed state vectors, so the spectral decomposition of the studied state
[y > with respect to H identifies with the superposition state |y involved
in the condition CH , while the time parameter loses its importance, the
situation being stationary. In these conditions it seems necessary to assume
in a “seif-referent” way that H,_, is H itself. This suggests that, in this
case, that is particular from a logical standpoint but of outstanding
pragmatic importance, it has to be assumed that a corresponding measure-
ment evolution of the fivst kind has already been accomplished by the natural
process that has broweli forte the considered quantized bound state. This
natural process dud produce the mutually disjoint spatial domains A,(y, t')
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. i ; .
also, but because of the spatial confinement O.f the wholg stthed sfupefp(;i,
ti0n> state vector inside a microscopic domain, the e;tlma.nont'o pnfm{h;
iliti i for the experimental estimation o
robabilities as a substitute . est
Probabilitics le(p(n), E}.';.|2 is impossible. Only another indirect me;‘pl‘otc.i f:a;f
Ec used in this case for the experimental estimation of the probabilities of
the eigenvalues E; of H. . _ _ .
S%nce quant:lm mechanics was built while attention was fOi{,;thf?d
mainly upon the atomic bound states, the remark; made above offer :11]
explanation of the tendency toward an identification between superpo
tions of state vectors and spectral decompositions of a state vector.

5. BEYOND ORTHODOX QUANTUM MECHANICS: B,
THE [PARTICLE + MEDIUM] INDIVIDUAL MODE

5.1. Probabilistic Insufficiencies of the Orthodox Theory and Questions of
Interpretation

The analyses performed in the preceding section [}J)roduccc}, we Eggs;tz
i and i i iki erception of the absence of any
reiterated and increasingly striking pe Rl
ipti inside the orthodox quantum mechanics,
and formalized description, insi ‘ : is: lor
indivi onding to the elementary q
the individual processes corresp 0 | nentar;
mechanical chain experiments. These, by their very dE:ﬁnll;O'n, 1nvzix;i£::13{
one realization of an operation of.state ,d d‘% tm,;d e
evolution M ,, and of a registration of an observe ciL;? f.e e
A2 . r . ) J )
orthodox formalism involves them quite fundamcnta}]ily.‘ T{ e,::{e;;ma,-y
j g f the quantum mechanica
operational-processual substratum of . } sl 4
Pgn?ﬁf\‘ in the sense of probabilities, the observed data V; .)‘f;u";u:dffilr repf‘j;:z:‘ .
0y o ] igeny . They constitute the reproducible pi
by corresponding eigenvalues a;. ] i ' R MO
i ' (5), (5') that introduce the g
4) from the random phenom'ena {5, 4 ! ' 7
ri-ze)ch{mjca.-’ probability spaces. Nevertheless they are dE\inil of miél;f;gitlfor
i : id of only an explicit con
descriptors. They are even devoi 3 ex
svmb-:?]ization They are just left nonrepresented inside thc cli'nerelg s;:;;;k?f
y : i i —qui ependently
i formalism. In this sense—quite in
accompaniments of the ' s s¢ teidopendepily o
i ical issues concerning essential indetermi _
any philosophical issues 1ce : ot o
ism is 1 lete with respect to itself,
formalism is incomplete. It is incomp vith et 20 b Gvebeos
e babilities which it applies and ev op:
to the abstract theory of pro ‘ s and deve
implicitly. This, at least partially, explains why the probabilistic organiz 1.“?]"
- ’ H S s LS . i e i
of quantum mechanics remained so cryptic. In Scc. 4 we have partially

i /construcli mside  the  orthodox
i i leteness by constructing, it .
remedied this incomp . ne. & e -
formalism, a mathematical representation ol the  op rations ol ‘\l'lllt
. : . H ] . YL L l .
ﬁu,pu,umn and by associating a mathematically expressed condition to e
i« s ) e

i viously ol by oy by M
individual measurement evolutions previously symbolized ¥ :

] i? = fid - i
(- e s i o e A A Iu-l- hies {Bies # L
(B Frcfaccrne] | bap | Comamin Rmccassil Msch Aissglhasiacs] ¥
o 4 p i LT 1}
Coapetie -5, Vawn pocrsuy, bocl i pamg b bine , Soc
r i#1 L B ) N y = -
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(which led to a measurement theorem). But the object of one single
realization of an operation of state preparation followed by an individual
evolution M ; still remains ambiguous. On the one hand, the orthodox
formalism associates a state vector |i) > with an operation of state }?rcpafa.
+en, but with each one reiteration, or only with the ensemble of all of
them? On the other hand, we have shown that at the very bottom of the
orthodox formalism, in the principle of superposition, is encapsulated a
model concerning that on what one operation of state preparation acts, a
model which at one and the same time is camouflaged, incompletely
specified, and obscurely perceived but nonunderstood, thereby generating
paradoxical problems. In what follows, transgressing now decidedly the
domain of the orthodox theory, we shall try to specify this orthodox model,
but only qualitatively for the moment. It will be remarkable to find that
this suffices for triggering a whole chain of “explanations” concerning the
physical significances of: the principle of superposition, superselection
rules, spectral decompositions of a state vector Versus superpositions of
slate vectors, the projection postulate, and the reduction problem. Thereby

the loops of interrogations opened up in the preceding sections will be
closed by stippled lines.

5.2. A [Particle + Medium] Specification of the Minimal Model Involved in
the Principle of Superposition

Concerning an individual “system” described by the quantum theory,
let us admit tentatively that: An individual entity concerned by the quantum

mechanical description cannor adequately be called a “microsystem,”
because each such entity consists of:

— (a) What is currently called the (universal) “medium” or the
“void,” simply all of it.

— (b) A highly localized part of the universal medium—this to be
called a “microsystem” or a “particle”—which is separated inside this
medium conceptually, for methodological reasons, and is regarded as a
“source of perturbation”™ of the whole “rest,” with respect to itself, of the
universal “medium,” the perturbations being posited to spread out with
some finite phase velocity 2

This sort of system will be called “[particle + medium] individual
system,” in short a [p + m] individual system.

Concerning a “state” of q [p+m] individual system, let us admit that
15 characterized by:

() A medinm state

(h) A panticle sge” consisting of the association between
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*  An invariant “intrinsic particle s!;atc" of a given “type’: fifill{:rmllxlec;
by several quite definite qualifications (.conslant “nmmrg:a \ig uca
defining a “rest mass,” a “spin,” an “electric charge,” etc.). ,0‘ ult,;ng !
perhaps more pertinent language, we can now say that ahpdrtm‘vegal
definite sort of highly localized state of movement of the uni
medium.

* A variable “dynamical particle sta.te""discribf?d by c)rftec;, “:i);::;rsn;
cal” qualifications (“position,” “velocity, ve,l,ouEy-dcpc.n cr;lative t,o
“momentum,” “angular momentum,” “energy,” etc.) tat are n

the state of observation.

The particle states are posited to interact with the medtihum stdailli:ninst;l-iz
i arti is osed to act on the me
following sense. The particle state is supp b
via pertfrbations that are somehow dependent on the .type of ttlle 12:1‘;){;?:
particle state, while the medium state is suppos_ecli to (in genera )naon o
i dynamical particle state, or eve |
on the particle state, on the Al pa & o SR
intrinsi i i annihilations). This restores the unity
intrinsic particle state (creations or anni o
of the unlijversal medium, conceptually broken for methodological reasons.
Soeealions of m_ ..
Concerning the preparations, let us admit that:

— Each one operation of preparation of a state 'of.al [p;li—n‘"l‘?s
individual system does introduce one particle and (;Jr!y oric (lfi: lt:lén;::d;:;;
it i a preparation of a state o lium,
none, we shall say that it is only a pr : : D
entity called a [particle + medium] in i
but not of the whole metaentity ca . vrs | e i
ile if it i articles, we shall say that i
system, while il it introduces two or more p ‘ . at i
;yprcparation of a many-particle state, so that it exceeds the one-system

quantum mechanics}.

Each one preparation of a state of a given sort gf a '[p +ImJ
individual system introduces always one .a_r.'ld the same typical invariant
intrinsic particle state of that [p+ m] individual system.

— Each one preparation of a state ofg [p+m] .in.divi‘dual systﬁ‘rr;
introduces a dynamical particle state which, in contradistlr;ctmn‘ tob}z zr
happens for the intrinsic partic.:le-state, belongs to _a.:?hoi en;;:;{ﬂb{’d
possibilities. The dynamical particle states. are nmfs;.reclgﬁu and no
individually inside quantum mechanics as it now stands.

— Each one preparation of a state ol a [ p ¢ m | individual s.y.s;tu;
foes introduce one and onfy one medivm state wlich belongs (o a whol
does & : ‘ sl W A -
nsemble ol possibilitics. The medinme states are vonspecified  and ne
ense 8 5

L S . :
described individually inside quantun mechann
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Concerning observation, let us assume that

— The registration of an eigenvalue of a quantum mechanical
observable can be produced only by the interaction of a convenient macro-
scopic apparatus, with the sort of highly localized state of movement of the
medium that has been called here a particle.

Concerning the relation between the states of a [p+m] individual

system and the “corresponding” quantum mechanical state vector |y 2, let us
admit that:

—  The state vector [ > connected with the results of the actions of
the operator of state preparation represented by the normed projector
(/< 1y >) Py, is a swatistical metadescriptor representing the whole
statistical ensemble of individual dynamical particle states and of
correlative individual medium states of the involved individual [p+m]
system. Via the algorithms of the quantum theory, this state vector (i >
yields only a knot of mutually nonseparated characterizations of the one
invariant intrinsic particle state of the studied [p+m] individual system,
of its variable individual dynamical particle states and medium states intro-
duced by the reiterations of the operation of state preparation represented
by (1/<y [ y,)) P, and of the relations between these.

Together, the ensemble of assumptions listed above constitute “the
[ particle + medium ] model.” The sort of individual system involved in this
model is hoth “microscopic” by its “particle” part and arbitrarily extended,
“cosmic,” by its “medium” part: It obeys the requirements of the minimal
orthodox model involved in the principle of superposition, and it completes
this model explicitly.

The explicitly declared unlimited extension of the medium part is a

hew and fundamental feature with respect to the well-known de

Broglie-Bohm model. More or less correlatively there are also other
differences.

— In the first place, the [p+m] model does not include the
extended “field” (called here the “medium”) into the concept of “particle”
or “microsystem.” It juxtaposes it (methodologically only) to this concept,
This difference is not devoid of significant consequences. Indeed, it follows
from it that the [p 4 m] individual model does no¢ introduce notions like
“wave of the particle,” or “wave-particle duality involving wave aspects of
a particle,” or “a particle which passes through both Young holes,” or “a
particle of which the corpuscular part passes through one Young hole while
its wave passes through both Young holes,” etc., A1l this sort of paradoxical
language ix entively offuced by the [p+m] individual model. Such is the
power ol the chowes of semantical assignations, to words, conventional as
they are. We e el with st state of movement of the universal medium



Mugur-Schichter
1438

involving one highly localized particle movement__. only conceptually—_bui
radically—separated inside the universal medium for methodologica

reasons favoring the descriptibility.

— In the second place the mutual distlinction and chaltactcrlzation of
the “particle” and the “medium” is, qualitatively, more specific. »
— In the third place, the relation bctwcep th.c quantum mfaf:f.la{lt:_ca
state vectors and the defined individual system 1s d:fferem.. The dlstm;, 102
between the two descriptional levels where these two descriptors 2(111:6 p a(fe“
is more radical: It is posited to concern also .the states of t}.le me t1u;n p:rt
of an individual [p+ m] system, not excluiwely ‘those f)f 1¥s par ;c;:c;) o
(“the position of the particle inside its wave”). Th1s: entails, or ins atati,on
contradistinction to what is done in the de Broglie-Bohm interpre din,
that the action of the individual medium state, upon the FEH;S.I);:; ng
dynamical-particle-state, cannot in general be rcprcsem;d :lwlt t {"t) Ofpthc
functions (like the quantum potential and the for.ces dCI'l‘JC‘ r0{n 1hi ‘h_ e
amplitude and the phase of the guanmm.me;‘}mmca;’ state L-ecILr;.' w ]Li[‘ e
a statistical meaning. In a future work this will 'bc found possible on yl L
quantum mechanical state vector has in‘ particular a onc—to-o]nc ﬁ‘e a 1‘m
with the corresponding individual medium state, as pro_bab;lf ap‘p(, i;:
in the case of a microscopic bound state and of certain macroscop
interference states. ) B
— Finally, with respect to Bohm’s conccpt o.f‘ holor‘nc?vcmc;lnl azcz
there are differences. The [p+ m7] model of an 1nd|y1dual system dqes n .
refer to the “subquantum medium,” nor to fluctua_tmn.s of lhr;ls."rﬁe 1urrt1r,ler
refers directly to the object of the quantum theory itself, for which no o

object is supposed.

5.4. The [Particle + Medium] Model and the Principle of Superposition

Consider the principle of superposition, formally expressed in our
terms: for any pair of preparable state vectors |/, and |y, there exists,
for any complex numbers 4, and /,, an “initial” state vector{ and an {;pera-
tion of state preparation (1/{¥u YD) Pyu=(2/Pal VD) Py +
(Ap/ <ty | ;) Py, such that

(V<P WD) Py 1 90 = LA/ o | WD) Pyt (a/<Yn LD Py T 1010
= }"ﬂ | ‘lbu> + )“a’J | l|b.l'1> ot |ifll"rr.l|’| j\'
The [p +m] individual model permits us to understand now the principle

H . 1 . [ . i I- : I th

of superposition as the assertion that, out of the nntil en llill!l.l u]_-‘l | tl
I i x H vy T . ' . anciple

of perturbation of the universal medinme represented by [if 1t in princi)
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possible to produce for the studied [p+ m] individual system involving an
indefinitely extended medium part, a new ensemble of states of perturbation
corresponding to any chosen quantum mechanical superposition state vector
Waps 26D = Ay 1Was 1) + Ay W, 1>, No matter how big is the spatial
distance that separates from one another the two finite spatial supports
A(a, ty) and A(b, t,) where the quantum mechanical presence probabilities
defined respectively for the two state vectors |y, 15> and |y, ,) are not
practically null (according to some definition of practical nullity, any one
but fixed), this can indeed be conceived to be possible via reiterations of
some global action that takes place on and in the indefinitely extended
medium parts of the involved replicas of the studied system. This global
action, represented by the normed projector (1/{y 1 4,>) P,.., can be
conceived to stem from the two separate actions represented by the two
normed projectors (4,/{y, | Vi) Py, and (A,/<y, 1y,>) P,,) that combine
in the expression of (1/<'f!aa,|"l’s>)f’u>ab- Each one of these two separate
actions consisting of some corresponding process triggered by a human
observer via some interactions with (or stemming from) macroobjects, thus
necessarily /local in spacetime, but that can be followed by a process extending
inside the medium on arbitrarily big spacetime supports and ending, in
cach reiteration of the global process of preparation represented by
(/< >) Py, at the time ¢, (statistical, measured with respect to the
zerotime of that reiteration) when has been achieved an individual factual
situation corresponding to the quantum mechanical descriptor |y, 1,) =

Ao lWas o> + Ay Wy, 1,>: The paradoxical notion that it is possible to act
“simultaneously” on one microscopic “‘particle’” at two arbitrarily distant

place, disappears (Figs. 3A and 3B).

5.5, The [Particle + Medium] Model and Interference with Respect to the

Summed State Vectors

The interferences relative to the summed state vectors appear as
intimately related with the above interpretation of the principle of super-
position. The “multiple” character of the operation of state preparation of
a superposition state vector plays the main role. From the different
localized sources of perturbation of the medium involved by an operation
of state preparation of this sort spread out, inside the medium, perturba-
tions arriving from different directions at that or that space-time point.
This creates an “interference field” that acts on the dynamical particle state
(and possibly also on the intrinsic particle state, namely on its intrinsic

mass'"™") according, 10 laws of interactions which probably will have to be
assumed 1o be casentinlly  of the type of those posited by the de Broglie-
Bohm model 10 well hnown (hat according, 1o the de Broglie Bohm
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model particles of which the movement is commanded by laws _of'that typ{:
can (in certain geometrical conditions) produce, on the statistical level,
observable “interference patterns” of impacts, while such paFternsfncff:r
arise in the absence of a “multiple” character of the operation of state
reparation. _ ‘ _
. pTl;is consequence of the [p+ m ] model associates an mterpretau'on_to
the calculus with whole probability trees discerned (and completed) inside
the orthodox formalism.

5.6. The [Particle + Medium] Model and Superselection Rules

Our definition of operators of state pr@paration. associated with the
interpretation of the principle of sgpcr_pomhpn offered by thej [p-.i-.l'tl;l]g
individual model, permit us to specify in quite general terms d‘ p,%stl-
source of superselection rules. Consider two operators of state pr:parra::tlgrr;
(/<P > Py, and {1/(1;!1,,11{/,-))‘13%] cqrrespondmg to two Staded\;; ; }
W, toy and ¥y, fo)- The two finite spatfai supports 4(a, tg) an ; 00;
where at the time ¢, the quantum mechamc_al presence Probabl]ﬁm’csr are n
practically null (according to some deﬁnitu?n pf practical nulh't}f_. dn‘).rl‘l);}ne
but fixed), are data that can be caculated inside .the orthoqm\ (ciJ_rmd 1sar£
But the dynamics of progression of the perturbations of the medium p A
from the studied [p+m] individual system, represented by t_hc dno'mr{?i
projectors {1/{Wa¥:>) Pya and [‘1_;"(!;’15, |y,>), are not desg:nbc 1r$£
orthodox quantum mechanics. Imagine now that thesc dyna.rmc? were e
that it is not possible to find two places in the medium star}lng1 n?n:lh‘ft ;
at some initial times 7, and #,, {, <fo> {» <lo» the pcrturbatmns}tl'v:aac, ‘a. t}?é
with the required form, the domains 4(a, t,) and A(f;, ty). In this c.;:;:t e
superposition state vector [V 55 t(})_: ){ W, to) + 4 ilfl};-,, to )d_ca;: L be
prepared. On the other hand, the unl;mltc.‘d chgrac}cr qft e me 1u_ p ;
which entails the possibility of arbitrarily big time 1ntcrv‘f1ls ;.'(,h rolda?)e
t, — to——suggests that any impossib.ility of thf:.type just spe‘m]ﬁed lg rollilon e
tempered perhaps in terms of high 1mpmbab1hty of a nalumldrea iza =1
practical impossibility of an intentional one. This would amOllIl'l b
suppress in principle the superselection rules, thus conserving ?{gorouiy
structure of vector space for the ensemble of state vectors, This per'mlls 0f1c
then to associate this ensemble with iin_lcar algebras of operators in a way
that in principle remains free of limitations.

57. The [Particle + Medium] Model Versus Projection, Preparation by
Measurement, and Reduction

Consider first only one meastrement evolution N concerning,
quantum mechanical observable A This measurenent evolution belongs to
ks
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some elementary quantum mechanical chain experiment [preparation
P(y)-—measurement evolution M ,—registration of a needle position V; of
D, ] (for the sake of simplicity we admit |,> = [y >). According to the
[p+ m] individual model the operation of state preparation P(ir) realized
at the beginning of this elementary quantum mechanical chain experiment
does introduce a particle, and only one, and the eigenvalue registration
from this elementary quantum mechanical chain experiment can be
produced only by the interaction of that one particle with a convenient
macroscopic apparatus. This entails already—exactly as in the case of the
de Broglie-Bohm model-—that one elementary quantum mechanical chain
experiment can produce only one observable result V; tied with only one
eigenvalue a;= f,(V,): There is no need of a “reduction” in order to explain
why each one elementary quantum mechanical chain experiment produces
only one observable result V;.

What are we now to coherently assume concerning the medium-state
during the one measurement evolution M, involved by one chain experi-
ment? With respect to this question also the [p+ m] model works in a
way similar to the de Broglie-Bohm model. But it permits one to go
further. Let us come back to the condition CH, and the measurement
theorem MT. These complete the orthodox formalism by statistical
statements. But the [p+ m] model permits one translate them as follows
into individual terms:

Inasmuch as it is “good” for yielding a registration of an eigenvalue
a;= f4(V;) of the observable A, an individual measurement evolution M ,
from an eclementary quantum mechanical chain experiment [preparation
P(if )—measurement evolution M ,—registration of a needle position V; of
D,] is such that it transforms the initial individual [p+m] state

. (unknown and nondescribed inside the quantum theory) produced by

the one realization of the operation of state preparation P(y) from that
experiment into a new individual [ p +m] state where:

—  On the finite spatial support 4,(y, 1) where the eigendifferential
[é;(u, t)» corresponding to the eigenvector |u,) asserts a nonzero presence
probability (see p. 1441), the type of medium state that surrounds the one
highly localized particle involved is well characterized mathematically by
the one, |u;>, among ail the quantum mechanical eigenvectors of A (while
nothing is specified concerning the state of the medium outside 4,(x, ¢')).

-— By interaction with the medium state from the vicinity 4,(y, t') of
the one particle involved, well characterized by the functional form of a
mathematical descriptor |u, >, the dynamical particle state acquires characters
that “mirror™ that medium state. These—not defined and thus nondescribed
inside quantuom mechanies  are sueft that by the final interaction of the
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emerges the observable datum ¥, that leads to precisely the particular
quantum mechanical eigenvalue a;= fal V).

According to this view, the generally nonnormed eigenvectors |u;) and
the corresponding eigenvalues a; from the orthodox quantum mechanical
formalism describe conjugated aspects of the [ p +m] individual system:

— The quantum mechanical eigenvectors 1, point toward
individual though arbitrarily extended factual designata, namely definite
types of patterns of medium state. Each eigenvector |u; ) can be regarded as
an abstract, idealized specification, in mathematical terms, of a particular
“yalue” of another more general qualification (semantic dimension),
namely that of “medium state created by a measurement evolution M ,,”
and which a priori admits of an infinite ensemble {|u,>} of distinct
“yalues.” An eigenvector |u;) yields a Platonic specification of the more
general qualification of an M ,-generated medium state, a specification
comparable, say, with some given nuance of blue that specifies the more
general qualification of color in a way freed from any physical spacetime
confinement: a pure definition of a certain “how.”

particle with the apparatus for registration of cigenvalues of A there

—  The ecigenvalue a; corresponding to the eigenvector |u;) is a
character of the dynamical-particlc state that corresponds to the pattern of
medium state characterized by |u;).

(Notice that in orthodox quantum mechanics the qualifications of
space and of time—Kant's a priori frame-qualifications, the “pure” where’s
and when’s involved by any how but prior to it-—pOSSess, each one, a par-
ticular status of its owi. The eigenvectors |x; =d(x—x,) {represcntaiions
of atomic here’s) tied with the position operator X (representation of some-
where) are highly singular functions. As to the time qualifications, they are
devoid of a corresponding operator. Furthermore the individual and the
statistical level of temporal description are currently mixed up with one
another or confounded. The time parameter from the argument of a state
vector [(x, 1)) possesses exclusively a statistical meaning, while inside
certain nonformalized definitions of measurement evolutions (consider, for
instance, the method of the time-of-flight for momentum measurements)
individual times come in, concerning the individual, glementary quantum
mechanical chain experiments and their individual outcomes a;= falV;):

Obviously the quantum mechanical incorporation of the time qualifications
is still very primitive. In such conditions, what hope is there to achieve a
unification with relativity?).

In short, imagine that by onc measturement evolution M the one
individual unknown [p-m ] state initinlly produced by (he operation
P(y) from one piven clementary quitntum mechimenl chiaime experiment,
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i;:&ﬁ%{es ;1 ;ew state v.ve]l ‘characterized—-insidc an arbitrarily extended
descrli yto the one particle involved-—by one pair of quantum mechanical
- e.p ors l({u}), a;). Then,_ iff the registration of the datum V/; tied with
regis[;ii?;:]ue quzfﬁ(V,} is nondestructive (as in a Stern—chrlach spin
, after this registration the metaenti i i
ratic _ ‘ ity [particle + med
remains indeed in an individual s i o
_ state which, around the “particle,”
| , particle,” con-
:::;]sq to Ilail wel! characterized by the same pair (|u;), a;) of quantum
anical descriptors of which the relevance h | ensu
- s of as been ensured before th
giilcsrt;;ltt;?;liblyh lhff hndl;lcluai measurement evolution M ,. This pair oef
s then indeed adequate for the estimation babiliti
( _ § of future probabilit
concerning possible observable manifestati indivi f the
. : stations of that individual stz
studied [p+m] individual s i S iere o
j system. While the characters of th i
: ! ual syste ¢ medium
: :i:c ;:gruilul;agmfjrog‘ ti:: particle” do not produce observable effects. (This
st as: ight come out to be false if an interf: ‘
medium-state with itself) were deli : el R s
: ‘ eliberately produced after the ei
registration, as Wigner has sugge 1) i il gl
’ ggested.*" Which would onl
on, as y confirm the
[p+m] individual model and would permit one to study in more detail

the individual medium
Anyhow: state produced by a measurement evolution M ,.)

We ¢ J
e ;’? gnderszand now both the orthodox definition of operations of
preparation, as measurement evolutions, and the projection postulate ‘

g:(t)f;;télﬂicsl:itlre]y accepting them, of course. The significance of the normed
¢ quantum mechanical state vector |@;) p
; : ; | that “corresponds” t
il;:;liemc%tpr Ju, >hm the statement of the condi}tion CH , becgmes alsg
ar. According to the [p+ m ) i ,
[p ] model the descriptor |®; ) has to be regarded

as TR :
a statistical metarepresentation of the individual system involved

§Cég;§11;g)| l;:{.ft)}]lg modicl th’e superposition state vector |y(x,1')) =
vcétor Eurjfx 5 inj{‘;, t )l>, t" > t, can emerge out of the studied state
mcasurcm,e;t o ay aty a}a;rge ensemble of reiterations of the action of the
metarepresemar.‘of ogf t;‘l)(: spgc.ii?(?at|i((1:jn>0?atllslet?nl;icregardc? i ?f_s"ﬂ””fca’
an M ,-generated medium state that is individuall s e ?f
(lu; >, a;). A statistical mathematical 1'&3prv:sv:nta.tiglzlml:‘)‘reserlteg O e
2> a;) A . (“packet”) where the
statisticity involves adulterating fluctuations around th >cise indivi
mathematical qualification given' by the eigenfuncti :3 Sl o
“imperfect” descriptor |@; ) alone Cf“_.f{;)- (HO_WCWF, 5
pragn‘.lj?ltic point of vie\J'—j-c?f thzn;lezziiiiieﬁ'ettll}:s::?;hﬁ;irumal from
Finally, consider the reduction problem. Since acc‘ordi
[p+m] model the process of passage from [(x, 1)) to I;I(l(i tr(’)];lf

Sﬂ.(' W el ) . ’ '
>iclha)l [h (v, 1") > 1" =1, concerns a  statistical ensemble of



1446 Mugur-Schiichter

individual processes, the generation by the measurement propagator H , as
well as the conservation by the unitarity of H,, of all the terms of the
superposition state vector |x(x, ¢')), concern exclusively this statistical
ensemble. They do not concern also the individual elementary chain
experiments.

The reduction problem simply disappears when the level of individual
description is clearly distinguished from the metalevel of statistical descrip-
tion: On the statistical level there is no suppression of superposition terms
while on the individual level there is no superposition of terms.

As to the informational reduction which appears in the observer’s mind
when he becomes aware of an individual eigenvalue registration, this is not
a specific feature of the quantum theory. It is introduced by any
probabilistic representation.

These last interpretations achieve our distinction between superposi-
tions of state vectors and spectral decompositions of a state vector and our
connection between these two notions.

6. CONCLUSION OF PART 1

We have constructed an integrated view concerning the probabilistic
organization of the quantum mechanical formalism. This view brings in
four hierarchically connected descriptional levels:

— The elementary quantum mechanical chain experiments (eqmce).

— The basic probability chains (1'), (5) which are metastructures
with respect to the elementary quantum mechanical chain experiments.

— The probability trees of a state preparation 7 (P(i/,), [ >) which
are metastructures with respect to the basic probability chains (1), (5).

— Linear superpositions of probability trees which are metastruc-
tures with respect to the probability trees, namely compositions of several
entire probability trees entailed by the principle of superposition (we do
not mention the quantum mechanical algorithms representing successive
measurements which, by use of the projection postulate, identify con-
fusingly the preparable states of a microsystem and the cigenfunctions of an
observable).

The integrated view concerning the probabilistic orpanization ol

quantum mechanics has acted as an instrument Tor coteal analyses and Tor
constructive developments, 1t permitted to complete the orthodox theory
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by the explicit definition of operators of state preparation and the calculus
with these, and by complements to the quantum mechanical theory of
measurements. In a second phase, it led outside the orthodox theory,
guiding the definition of a model founded on a concept of [particle +
medium ] individual system that is microscopic by certain aspects while by
other aspects it is arbitrarily extended, cosmic. We have shown that this
model permits to better “understand” the principle of superposition, the
emergence of observable interference patterns of impacts, the orthodox
definition of the operations of state preparation by measurements and the
projection postulate, and the reduction problem.

The quantum mechanical calculi as well as the verbal accompaniments
of these convey only very mutilated indications concerning the underlying
probabilistic organization of the formalism. Vectors, operators, equations,
probability measures, operational definitions of measurements, arc
manipulated accordingly to algorithms. But the more globalized concepts
of an elementary quantum mechanical chain experiment, of a random
phenomenon (5), (5') of a basic probability chain (1'), (1”), of a probability
tree 7 (P(Yq). ¥ >), with their formal features and their specific semantic
contents, seem to have remained so far nonperceived. Not even the
algorithmic shadow (1) of only an isclated basic probability chain (17)
has been clearly recognized as a probabilistic whole. A fortiori, the distinction
between formal entities and factual entities remained so dispersed and so
vague that the central connecting role of the identities (7) has not been
realized fully. This, no doubt, is due to the particular complexity ol the
random phenomena (5) studied in quantum mechanics and to the unusual
potential-actualization nature of the roots [eqmce] of the elementary
events ¥; produced by these. The conjunction of these two characters acted
as a barrier.

We have overcome this barrier by a systematic reference to the basic
concepts of the abstract theory of probabilities and by an explicit specifica
tion of the cognitive operations by which the “‘observer,” the “conceptor.”
produces the entities to be qualified (quantum mechanical states) and 1he
processes of qualification of these (measurement evolutions). In the sccomd
part of this work, in the second issue of this journal dedicated to Sir Karl
Popper, we shall generalize this method. Thereby we shall obtain a pencral
representation  of  the “relativized  descriptions™ ol any  kind  where
remarkable relations with Sir Karl Popper’s concept ol propensity will
appear. But the most clficient leature of the approach practised above s the
fact that we have taken into account systematically the spacetime aspects of
all the phenomena involved. This s what has induced an orpanization, o
unilying form, into the pile of probabilistie alporithims, huagime o balloon
ol some soplusticated form: Fake awiy the space Trom e by letting out the
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air. What remains? A heap of randomly folded surface. Extend then to a
spacetime situation, to a sort of form-dance of the balloon, and the
example becomes still more sad.

Der Lattenzaun.

Es war einmal ein Lattenzaun, mit Zwischenraum, hidurchzushaun.
Ein Architekt der dieses sah stand eines Abends plétzlich da und nahm den
Zwischenraum heraus und baute draus ein grosses Haus. Der Zaun
indessen blieb ganz dumm, mit Latten ohne was herum. Ein Anblick
hesslich und gemein. Drum zog ihn der Senat auch ein. Der Architekt
jedoch entfloh nach Afri-od-Ameriko.

Christian Morgenstern, Galgenlieder Der Gingganz.
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